{"title":"Performance of water quality simulation model for lifting drainage water joints and mixing zone determination","authors":"Talaat El-Gamal, Asmaa Agrama","doi":"10.1007/s13201-024-02304-1","DOIUrl":null,"url":null,"abstract":"<div><p>Limited water resources with gradual increase in water demand led to higher dependence on drainage water as one of the non-conventional water resources in Egypt. However, there was no precise approach for using such resource. The practices ranged between stopping lifting drainage water to main canals at many locations due to the water quality degradation in the drains and pure dependence on polluted drainage water by farmers. This implies the importance of applying the mathematical models that provide precise and flexible alternative for the dependence on the drainage water. This procedure could save the big investments that were used in the lifting stations while mitigating the environmental hazards. Cornell Mixing Zone Expert System (CORMIX) model is one of these mathematical simulation models. The study used surface discharge sub-model (CORMIX3) to define the mixing zone between the lifted drainage water from Mehalet Rough drain and the freshwater in Mit Yazid canal, by investigated biochemical oxygen demand (BOD) and total dissolved solids (TDS). The simulation results verified that the two investigated parameters met WQ standards for the Egyptian law 48/1982. BOD standard value was met after 448.36 m, in 723 s. TDS standard value was met after 4.46 m, in 7.8 s. This was far ahead of the first municipal station regardless low quality of these parameters in the drain. This is the first time to apply this model in the irrigation sector in Egypt, and the results were promising for defining the precise approach to reuse the drainage water in Egypt.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"14 12","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02304-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02304-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Limited water resources with gradual increase in water demand led to higher dependence on drainage water as one of the non-conventional water resources in Egypt. However, there was no precise approach for using such resource. The practices ranged between stopping lifting drainage water to main canals at many locations due to the water quality degradation in the drains and pure dependence on polluted drainage water by farmers. This implies the importance of applying the mathematical models that provide precise and flexible alternative for the dependence on the drainage water. This procedure could save the big investments that were used in the lifting stations while mitigating the environmental hazards. Cornell Mixing Zone Expert System (CORMIX) model is one of these mathematical simulation models. The study used surface discharge sub-model (CORMIX3) to define the mixing zone between the lifted drainage water from Mehalet Rough drain and the freshwater in Mit Yazid canal, by investigated biochemical oxygen demand (BOD) and total dissolved solids (TDS). The simulation results verified that the two investigated parameters met WQ standards for the Egyptian law 48/1982. BOD standard value was met after 448.36 m, in 723 s. TDS standard value was met after 4.46 m, in 7.8 s. This was far ahead of the first municipal station regardless low quality of these parameters in the drain. This is the first time to apply this model in the irrigation sector in Egypt, and the results were promising for defining the precise approach to reuse the drainage water in Egypt.