Modification methods of the Stokes’ kernel for determining the (quasi-) geoid with the Remove-Compute-Restore technique

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Jian Ma, Ziqing Wei, Zhenhe Zhai, Duan Li, Changqiang Feng, Xiaogang Liu, Bin Guan
{"title":"Modification methods of the Stokes’ kernel for determining the (quasi-) geoid with the Remove-Compute-Restore technique","authors":"Jian Ma, Ziqing Wei, Zhenhe Zhai, Duan Li, Changqiang Feng, Xiaogang Liu, Bin Guan","doi":"10.1007/s00190-024-01902-w","DOIUrl":null,"url":null,"abstract":"<p>The geoid and quasi-geoid serve as the reference surfaces of the orthometric and normal height systems, respectively. In order to improve the accuracy of the (quasi-) geoid determined by the Stokes integral with use of the Remove-Compute-Restore (RCR) technique, various modification methods for the spherical Stokes’ kernels, including the spheroidal, cosine-, power-, and Molodensky-modified kernels, are studied in this paper. In addition to the traditional Molodensky-modified Stokes’ kernel, a more effective Molodensky-modified Stokes’ kernel is put forward. A general formula for spectral decomposition of the Stokes integral in the RCR mode is derived, followed by the spectral analysis to reveal the transfer principles of gravity data when using different Stokes’ kernels. The spheroidal and modified Stokes integrals can cause spectral leakage phenomenon, and a method to eliminate spectral leakage is presented based on spectral analysis. The research indicates the low truncation degree of the spheroidal Stokes’ kernel and the low modification degrees of the modified Stokes’ kernel affect the accuracy of the (quasi-) geoid significantly. Quantitative methods for estimating the empirical values of the parameters of the low-degree spheroidal and modified Stokes’ kernels are proposed and the effectiveness of the methods is validated through numerical tests.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"77 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01902-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The geoid and quasi-geoid serve as the reference surfaces of the orthometric and normal height systems, respectively. In order to improve the accuracy of the (quasi-) geoid determined by the Stokes integral with use of the Remove-Compute-Restore (RCR) technique, various modification methods for the spherical Stokes’ kernels, including the spheroidal, cosine-, power-, and Molodensky-modified kernels, are studied in this paper. In addition to the traditional Molodensky-modified Stokes’ kernel, a more effective Molodensky-modified Stokes’ kernel is put forward. A general formula for spectral decomposition of the Stokes integral in the RCR mode is derived, followed by the spectral analysis to reveal the transfer principles of gravity data when using different Stokes’ kernels. The spheroidal and modified Stokes integrals can cause spectral leakage phenomenon, and a method to eliminate spectral leakage is presented based on spectral analysis. The research indicates the low truncation degree of the spheroidal Stokes’ kernel and the low modification degrees of the modified Stokes’ kernel affect the accuracy of the (quasi-) geoid significantly. Quantitative methods for estimating the empirical values of the parameters of the low-degree spheroidal and modified Stokes’ kernels are proposed and the effectiveness of the methods is validated through numerical tests.

Abstract Image

利用移除-计算-恢复技术确定(准)大地水准面的斯托克斯核修改方法
大地水准面和准大地水准面分别作为正高和法高系统的基准面。为了利用去除-计算-恢复(RCR)技术提高通过斯托克斯积分确定的(准)大地水准面的精度,本文研究了球面斯托克斯核的各种修正方法,包括球面核、余弦核、幂核和莫洛登斯基修正核。除了传统的 Molodensky 修正斯托克斯核之外,还提出了一种更有效的 Molodensky 修正斯托克斯核。推导出了 RCR 模式下斯托克斯积分的谱分解通式,并通过谱分析揭示了使用不同斯托克斯核时重力数据的传递原理。球面斯托克斯积分和修正斯托克斯积分会导致频谱泄漏现象,基于频谱分析提出了消除频谱泄漏的方法。研究表明,球面斯托克斯核的低截断度和修正斯托克斯核的低修正度会严重影响(准)大地水准面的精度。提出了估算低度球面斯托克斯核和修正斯托克斯核参数经验值的定量方法,并通过数值试验验证了这些方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信