Lattice Boltzmann Simulation of the Poroelastic Effect on Apparent Permeability in Coal Micro/Nanopores

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Kang Yang, Yunpei Liang, Wei Li, Qiang Chen, Erlei Su, Chenglin Tian
{"title":"Lattice Boltzmann Simulation of the Poroelastic Effect on Apparent Permeability in Coal Micro/Nanopores","authors":"Kang Yang, Yunpei Liang, Wei Li, Qiang Chen, Erlei Su, Chenglin Tian","doi":"10.1007/s11053-024-10427-0","DOIUrl":null,"url":null,"abstract":"<p>To investigate fully the poroelastic effect on apparent permeability in coal micro/nanopores, a multi-mechanism apparent permeability model coupling the gas slippage effect and the poroelastic effect is hereby constructed on the strength of the lattice Boltzmann method. The contributions of the permeability of gas slippage, surface diffusion, and viscous flow were investigated. The results showed that the gas transport was controlled by surface diffusion in micro/nanopores with initial sizes of less than 10 nm. Under a low pore pressure, the contribution share of gas slippage permeability to the apparent gas permeability decreased exponentially as the pressure rose. When the pore pressure ascended, the dynamic apparent permeability ratio (i.e., the ratio of the apparent permeability affected by the poroelastic effect to the initial apparent permeability) was subjected to the slippage effect initially and dominated by the poroelastic effect later. Additionally, the slippage effect’s contribution to the apparent permeability ratio plunged under a lower pore pressure, but such decrease slackened as the pore pressure grew to a higher value. During coalbed methane (CBM) recovery in low-permeability coal seams, the slippage effect’s contribution to the CBM recovery production surges first, then falls slowly, and finally restores to a slow increase, and its contribution is enhanced in micro/nanopores with smaller average pore sizes.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"28 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10427-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate fully the poroelastic effect on apparent permeability in coal micro/nanopores, a multi-mechanism apparent permeability model coupling the gas slippage effect and the poroelastic effect is hereby constructed on the strength of the lattice Boltzmann method. The contributions of the permeability of gas slippage, surface diffusion, and viscous flow were investigated. The results showed that the gas transport was controlled by surface diffusion in micro/nanopores with initial sizes of less than 10 nm. Under a low pore pressure, the contribution share of gas slippage permeability to the apparent gas permeability decreased exponentially as the pressure rose. When the pore pressure ascended, the dynamic apparent permeability ratio (i.e., the ratio of the apparent permeability affected by the poroelastic effect to the initial apparent permeability) was subjected to the slippage effect initially and dominated by the poroelastic effect later. Additionally, the slippage effect’s contribution to the apparent permeability ratio plunged under a lower pore pressure, but such decrease slackened as the pore pressure grew to a higher value. During coalbed methane (CBM) recovery in low-permeability coal seams, the slippage effect’s contribution to the CBM recovery production surges first, then falls slowly, and finally restores to a slow increase, and its contribution is enhanced in micro/nanopores with smaller average pore sizes.

Abstract Image

晶格玻尔兹曼模拟煤微/纳米孔隙表观渗透率的挤压弹性效应
为了充分研究孔弹性效应对煤微孔/纳米孔表观渗透率的影响,本文基于格点玻尔兹曼法,构建了气体滑移效应和孔弹性效应耦合的多机制表观渗透率模型。研究了气体滑动、表面扩散和粘性流动对渗透率的贡献。结果表明,在初始尺寸小于 10 nm 的微孔/纳米孔中,气体传输由表面扩散控制。在低孔隙压力下,随着压力的升高,气体滑动渗透率对表观气体渗透率的贡献份额呈指数下降。当孔隙压力升高时,动态表观渗透率(即受孔弹效应影响的表观渗透率与初始表观渗透率之比)最初受制于滑移效应,之后则以孔弹效应为主。此外,在较低的孔隙压力下,滑移效应对视渗透率比值的贡献会急剧下降,但当孔隙压力升高时,这种降幅会减弱。在低渗透煤层中进行煤层气采收时,滑移效应对煤层气采收率的贡献率先是急剧上升,然后缓慢下降,最后恢复到缓慢上升的状态,而且在平均孔径较小的微孔/纳米孔中,滑移效应的贡献率更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信