Feynman's Inverse Problem

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Adrian Kirkeby
{"title":"Feynman's Inverse Problem","authors":"Adrian Kirkeby","doi":"10.1137/23m1611488","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 66, Issue 4, Page 694-718, November 2024. <br/> We analyze an inverse problem for water waves posed by Richard Feynman in the BBC documentary Fun to Imagine. We show that the problem can be modeled as an inverse Cauchy problem for gravity-capillary waves, conduct a detailed analysis of the Cauchy problem, and give a uniqueness proof for the inverse problem. Somewhat surprisingly, this results in a positive answer to Feynman's question. In addition, we derive stability estimates for the inverse problem for both continuous and discrete measurements, propose a simple inversion method, and conduct numerical experiments to verify our results.","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1611488","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Review, Volume 66, Issue 4, Page 694-718, November 2024.
We analyze an inverse problem for water waves posed by Richard Feynman in the BBC documentary Fun to Imagine. We show that the problem can be modeled as an inverse Cauchy problem for gravity-capillary waves, conduct a detailed analysis of the Cauchy problem, and give a uniqueness proof for the inverse problem. Somewhat surprisingly, this results in a positive answer to Feynman's question. In addition, we derive stability estimates for the inverse problem for both continuous and discrete measurements, propose a simple inversion method, and conduct numerical experiments to verify our results.
费曼逆问题
SIAM Review》,第 66 卷第 4 期,第 694-718 页,2024 年 11 月。 我们分析了理查德-费曼(Richard Feynman)在英国广播公司纪录片《想象的乐趣》(Fun to Imagine)中提出的水波逆问题。我们表明,该问题可以建模为重力-毛细管波的反考希问题,对考希问题进行了详细分析,并给出了反问题的唯一性证明。出人意料的是,这对费曼的问题给出了肯定的答案。此外,我们还推导了连续和离散测量逆问题的稳定性估计,提出了一种简单的反演方法,并进行了数值实验来验证我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信