Classification of dynamical Lie algebras of 2-local spin systems on linear, circular and fully connected topologies

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Roeland Wiersema, Efekan Kökcü, Alexander F. Kemper, Bojko N. Bakalov
{"title":"Classification of dynamical Lie algebras of 2-local spin systems on linear, circular and fully connected topologies","authors":"Roeland Wiersema, Efekan Kökcü, Alexander F. Kemper, Bojko N. Bakalov","doi":"10.1038/s41534-024-00900-2","DOIUrl":null,"url":null,"abstract":"<p>Much is understood about 1-dimensional spin chains in terms of entanglement properties, physical phases, and integrability. However, the Lie algebraic properties of the Hamiltonians describing these systems remain largely unexplored. In this work, we provide a classification of all Lie algebras generated by the terms of 2-local spin chain Hamiltonians, or so-called dynamical Lie algebras, on 1-dimensional linear and circular lattice structures. We find 17 unique dynamical Lie algebras. Our classification includes some well-known models such as the transverse-field Ising model and the Heisenberg chain, and we also find more exotic classes of Hamiltonians that appear new. In addition to the closed and open spin chains, we consider systems with a fully connected topology, which may be relevant for quantum machine learning approaches. We discuss the practical implications of our work in the context of variational quantum computing, quantum control and the spin chain literature.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"69 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00900-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Much is understood about 1-dimensional spin chains in terms of entanglement properties, physical phases, and integrability. However, the Lie algebraic properties of the Hamiltonians describing these systems remain largely unexplored. In this work, we provide a classification of all Lie algebras generated by the terms of 2-local spin chain Hamiltonians, or so-called dynamical Lie algebras, on 1-dimensional linear and circular lattice structures. We find 17 unique dynamical Lie algebras. Our classification includes some well-known models such as the transverse-field Ising model and the Heisenberg chain, and we also find more exotic classes of Hamiltonians that appear new. In addition to the closed and open spin chains, we consider systems with a fully connected topology, which may be relevant for quantum machine learning approaches. We discuss the practical implications of our work in the context of variational quantum computing, quantum control and the spin chain literature.

Abstract Image

线性拓扑、环状拓扑和全连接拓扑上的 2 局域自旋系统动态列阵的分类
人们对一维自旋链的纠缠特性、物理相位和可积分性有了很多了解。然而,描述这些系统的哈密顿的列代数性质在很大程度上仍未得到探索。在这项研究中,我们对一维线性和环形晶格结构上由 2 局域自旋链哈密顿项生成的所有列代数,即所谓的动力学列代数进行了分类。我们发现了 17 个独特的动态李代数。我们的分类包括一些众所周知的模型,如横向场伊辛模型和海森堡链,同时我们还发现了更多新颖奇特的哈密顿。除了封闭和开放的自旋链,我们还考虑了具有全连接拓扑的系统,这可能与量子机器学习方法有关。我们将结合变分量子计算、量子控制和自旋链文献,讨论我们工作的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信