OnionVQE optimization strategy for ground state preparation on NISQ devices

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Katerina Gratsea, Johannes Selisko, Maximilian Amsler, Christopher Wever, Thomas Eckl and Georgy Samsonidze
{"title":"OnionVQE optimization strategy for ground state preparation on NISQ devices","authors":"Katerina Gratsea, Johannes Selisko, Maximilian Amsler, Christopher Wever, Thomas Eckl and Georgy Samsonidze","doi":"10.1088/2058-9565/ad8a85","DOIUrl":null,"url":null,"abstract":"The variational quantum eigensolver (VQE) is one of the most promising and widely used algorithms for exploiting the capabilities of current Noisy Intermediate-Scale Quantum (NISQ) devices. However, VQE algorithms suffer from a plethora of issues, such as barren plateaus, local minima, quantum hardware noise, and limited qubit connectivity, thus posing challenges for their successful deployment on hardware and simulators. In this work, we propose a VQE optimization strategy that builds upon recent advances in the literature, and exhibits very shallow circuit depths when applied to the specific system of interest, namely a model Hamiltonian representing a cuprate superconductor. These features make our approach a favorable candidate for generating good ground state approximations on current NISQ devices. Our findings illustrate the potential of VQE algorithmic development for leveraging the full capabilities of NISQ devices.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"3 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad8a85","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The variational quantum eigensolver (VQE) is one of the most promising and widely used algorithms for exploiting the capabilities of current Noisy Intermediate-Scale Quantum (NISQ) devices. However, VQE algorithms suffer from a plethora of issues, such as barren plateaus, local minima, quantum hardware noise, and limited qubit connectivity, thus posing challenges for their successful deployment on hardware and simulators. In this work, we propose a VQE optimization strategy that builds upon recent advances in the literature, and exhibits very shallow circuit depths when applied to the specific system of interest, namely a model Hamiltonian representing a cuprate superconductor. These features make our approach a favorable candidate for generating good ground state approximations on current NISQ devices. Our findings illustrate the potential of VQE algorithmic development for leveraging the full capabilities of NISQ devices.
针对 NISQ 器件基态制备的 OnionVQE 优化策略
变分量子求解器(VQE)是最有前途、应用最广泛的算法之一,可用于利用当前噪声中量子(NISQ)器件的能力。然而,VQE 算法存在大量问题,如贫瘠高原、局部极小值、量子硬件噪声和有限的量子比特连接性,因此对其在硬件和模拟器上的成功部署提出了挑战。在这项工作中,我们提出了一种 VQE 优化策略,该策略建立在最新文献进展的基础上,在应用于特定系统(即代表杯状超导体的哈密顿模型)时表现出非常浅的电路深度。这些特点使我们的方法成为在当前 NISQ 器件上生成良好基态近似值的有利候选方案。我们的研究结果表明了 VQE 算法开发在充分利用 NISQ 设备能力方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信