Pengfei Dai , Jiangfeng Huang , Xin Cao , Jianwei Zhao , Liang Xue , Yawen Tang , Ping Wu
{"title":"Central metal coordination environment optimization enhances Na diffusion and structural stability in Prussian blue analogues","authors":"Pengfei Dai , Jiangfeng Huang , Xin Cao , Jianwei Zhao , Liang Xue , Yawen Tang , Ping Wu","doi":"10.1016/j.ensm.2024.103890","DOIUrl":null,"url":null,"abstract":"<div><div>Prussian blue analogues, particularly metal hexacyanoferrates with double octahedral coordination (DOC) structures, hold great promise as cathode materials for sodium-ion batteries. However, their practical application is hindered by limited structural stability and restricted ionic diffusion channels inherent to the DOC structure. In this study, we have successfully integrated a mixed tetrahedral and octahedral coordination (TOC) structure with the DOC structure by a dual polymerization and high-entropy strategy, thereby optimizing the central metal coordination environment in hexacyanoferrate cathodes. It leverages the TOC structure's superiorities in structural stability and ionic diffusion, resulting in a hexacyanoferrate-based cathode that exhibits exceptional performance, with a capacity retention of 81.6% after 1000 cycles at 0.5 A g-1 and high rate capabilities of 96.7 and 89.1 mAh g-1 at 0.5 and 1 A g-1, respectively. These findings not only underscore the potential of the TOC design for prussian blue cathodes but also pave the way for the development of high-performance, durable sodium-ion battery systems.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"74 ","pages":"Article 103890"},"PeriodicalIF":18.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724007165","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Prussian blue analogues, particularly metal hexacyanoferrates with double octahedral coordination (DOC) structures, hold great promise as cathode materials for sodium-ion batteries. However, their practical application is hindered by limited structural stability and restricted ionic diffusion channels inherent to the DOC structure. In this study, we have successfully integrated a mixed tetrahedral and octahedral coordination (TOC) structure with the DOC structure by a dual polymerization and high-entropy strategy, thereby optimizing the central metal coordination environment in hexacyanoferrate cathodes. It leverages the TOC structure's superiorities in structural stability and ionic diffusion, resulting in a hexacyanoferrate-based cathode that exhibits exceptional performance, with a capacity retention of 81.6% after 1000 cycles at 0.5 A g-1 and high rate capabilities of 96.7 and 89.1 mAh g-1 at 0.5 and 1 A g-1, respectively. These findings not only underscore the potential of the TOC design for prussian blue cathodes but also pave the way for the development of high-performance, durable sodium-ion battery systems.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.