Electrocatalysis coupled super-stable mineralization for the efficient treatment of phosphorus containing plating wastewater

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Zilong Li , Nuo Xu , Shihua Liu , Yawen Wang , Vishnu D. Rajput , Tatiana Minkina , Faying Fan , Wa Gao , Yufei Zhao
{"title":"Electrocatalysis coupled super-stable mineralization for the efficient treatment of phosphorus containing plating wastewater","authors":"Zilong Li ,&nbsp;Nuo Xu ,&nbsp;Shihua Liu ,&nbsp;Yawen Wang ,&nbsp;Vishnu D. Rajput ,&nbsp;Tatiana Minkina ,&nbsp;Faying Fan ,&nbsp;Wa Gao ,&nbsp;Yufei Zhao","doi":"10.1016/j.ces.2024.120910","DOIUrl":null,"url":null,"abstract":"<div><div>The automotive, electronics, and aerospace sectors use electroless nickel plating (ENP) technology for surface treatment. Hypophosphite, a widely used reducing agent in ENP, generates large volumes of hypophosphate (H<sub>2</sub>PO<sub>2</sub><sup>-</sup>) and nickel ions (Ni<sup>2+</sup>) in its wastewater which poses potential risks to human health. However, it is a highly challenging task to remove and recycle the H<sub>2</sub>PO<sub>2</sub><sup>-</sup> and Ni<sup>2+</sup> from such wastewater. In this study, a novel electrocatalysis coupled super-stable mineralization process was developed for the treatment of phosphorus-containing ENP wastewater. The electrocatalytic system, utilizing commercial lead dioxide and stainless steel as the anode and cathode, separately, achieved remarkable results in simultaneously removing H<sub>2</sub>PO<sub>2</sub><sup>-</sup> and recycling valuable Ni<sup>2+</sup> ions from ENP wastewater, with a 99.1 % oxidation efficiency for H<sub>2</sub>PO<sub>2</sub><sup>-</sup> to PO<sub>4</sub><sup>3-</sup> and a high recovery rate of 99.8 % for nickel. In order to meet industrial emission standards, layered double hydroxide (CaAl-LDH) and its calcined derivatives (CaAl-900) were employed as super-stable mineralizers for the further treatment of total phosphorus (TP) and residual Ni<sup>2+</sup> in the wastewater. The mechanism underlying the enhanced treatment of ENP wastewater was elucidated through free radical quenching experiments, revealed superoxide radicals (·O<sub>2</sub><sup>–</sup>) as the primary active species. It is noteworthy that the successful treatment of actual ENP wastewater was achieved, meeting standard discharge requirements. This study provides novel insights for achieving resource-efficient wastewater treatment and promoting environmentally friendly electroplating industries.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"302 ","pages":"Article 120910"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924012107","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The automotive, electronics, and aerospace sectors use electroless nickel plating (ENP) technology for surface treatment. Hypophosphite, a widely used reducing agent in ENP, generates large volumes of hypophosphate (H2PO2-) and nickel ions (Ni2+) in its wastewater which poses potential risks to human health. However, it is a highly challenging task to remove and recycle the H2PO2- and Ni2+ from such wastewater. In this study, a novel electrocatalysis coupled super-stable mineralization process was developed for the treatment of phosphorus-containing ENP wastewater. The electrocatalytic system, utilizing commercial lead dioxide and stainless steel as the anode and cathode, separately, achieved remarkable results in simultaneously removing H2PO2- and recycling valuable Ni2+ ions from ENP wastewater, with a 99.1 % oxidation efficiency for H2PO2- to PO43- and a high recovery rate of 99.8 % for nickel. In order to meet industrial emission standards, layered double hydroxide (CaAl-LDH) and its calcined derivatives (CaAl-900) were employed as super-stable mineralizers for the further treatment of total phosphorus (TP) and residual Ni2+ in the wastewater. The mechanism underlying the enhanced treatment of ENP wastewater was elucidated through free radical quenching experiments, revealed superoxide radicals (·O2) as the primary active species. It is noteworthy that the successful treatment of actual ENP wastewater was achieved, meeting standard discharge requirements. This study provides novel insights for achieving resource-efficient wastewater treatment and promoting environmentally friendly electroplating industries.

Abstract Image

Abstract Image

电催化耦合超稳定矿化法高效处理含磷电镀废水
汽车、电子和航空航天领域使用化学镀镍(ENP)技术进行表面处理。次磷酸是 ENP 中广泛使用的还原剂,会在废水中产生大量次磷酸(H2PO2-)和镍离子(Ni2+),对人类健康构成潜在风险。然而,从此类废水中去除并回收 H2PO2- 和 Ni2+ 是一项极具挑战性的任务。本研究开发了一种新型电催化耦合超稳定矿化工艺,用于处理 ENP 含磷废水。该电催化系统分别利用商用二氧化铅和不锈钢作为阳极和阴极,在同时去除 ENP 废水中的 H2PO2- 和回收有价值的 Ni2+ 离子方面取得了显著效果,H2PO2- 的氧化效率达到 99.1%,镍的回收率高达 99.8%。为了达到工业排放标准,层状双氢氧化物(CaAl-LDH)及其煅烧衍生物(CaAl-900)被用作超稳定矿化剂,用于进一步处理废水中的总磷(TP)和残留 Ni2+。通过自由基淬灭实验阐明了ENP废水强化处理的机制,发现超氧自由基(-O2-)是主要的活性物种。值得注意的是,实际 ENP 废水的成功处理达到了标准排放要求。这项研究为实现资源节约型废水处理和促进环境友好型电镀工业提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信