Spermidine limits diabetes by modulating RIPK1-mediated cell death and inflammation

IF 4 2区 医学 Q2 CHEMISTRY, MEDICINAL
{"title":"Spermidine limits diabetes by modulating RIPK1-mediated cell death and inflammation","authors":"","doi":"10.1038/s41556-024-01542-4","DOIUrl":null,"url":null,"abstract":"We establish a mouse model of progressive diabetes induced by conditional NAT1 deficiency in vascular endothelial cells. NAT1 deficiency promotes the activation of RIPK1 owing to a type of post-translational modification mediated by spermidine and deoxyhyupisin synthase termed acetyl-hypusination. Our results suggest that inhibition of RIPK1 could be used to treat type 2 diabetes and vascular inflammation.","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":"37 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41556-024-01542-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

We establish a mouse model of progressive diabetes induced by conditional NAT1 deficiency in vascular endothelial cells. NAT1 deficiency promotes the activation of RIPK1 owing to a type of post-translational modification mediated by spermidine and deoxyhyupisin synthase termed acetyl-hypusination. Our results suggest that inhibition of RIPK1 could be used to treat type 2 diabetes and vascular inflammation.

Abstract Image

精胺通过调节 RIPK1 介导的细胞死亡和炎症限制糖尿病的发生
我们在血管内皮细胞中建立了一个由条件性 NAT1 缺乏诱导的进行性糖尿病小鼠模型。NAT1 缺乏会促进 RIPK1 的活化,这是一种由亚精胺和脱氧羽扇豆素合成酶介导的翻译后修饰(称为乙酰化)所致。我们的研究结果表明,抑制 RIPK1 可用于治疗 2 型糖尿病和血管炎症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信