Integrability conditions for Boussinesq type systems

Q1 Mathematics
R. Hernández Heredero , V. Sokolov
{"title":"Integrability conditions for Boussinesq type systems","authors":"R. Hernández Heredero ,&nbsp;V. Sokolov","doi":"10.1016/j.padiff.2024.100959","DOIUrl":null,"url":null,"abstract":"<div><div>The symmetry approach to the classification of evolution integrable partial differential equations (see, for example (Mikhailov et al.,1991)) produces an infinite series of functions, defined in terms of the right hand side, that are conserved densities of any equation having infinitely many infinitesimal symmetries. For instance, the function <span><math><mfrac><mrow><mi>∂</mi><mi>f</mi></mrow><mrow><mi>∂</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></mfrac></math></span> has to be a conserved density of any integrable equation of the KdV type <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. This fact imposes very strong conditions on the form of the function <span><math><mi>f</mi></math></span>. In this paper we construct similar canonical densities for equations of the Boussinesq type. In order to do that, we write the equations as evolution systems and generalise the formal diagonalisation procedure proposed in Mikhailov et al. (1987) to these systems.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100959"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The symmetry approach to the classification of evolution integrable partial differential equations (see, for example (Mikhailov et al.,1991)) produces an infinite series of functions, defined in terms of the right hand side, that are conserved densities of any equation having infinitely many infinitesimal symmetries. For instance, the function fux has to be a conserved density of any integrable equation of the KdV type ut=uxxx+f(u,ux). This fact imposes very strong conditions on the form of the function f. In this paper we construct similar canonical densities for equations of the Boussinesq type. In order to do that, we write the equations as evolution systems and generalise the formal diagonalisation procedure proposed in Mikhailov et al. (1987) to these systems.
Boussinesq 型系统的可积分性条件
对可演化积分偏微分方程进行分类的对称性方法(例如,见 Mikhailov 等人,1991 年)产生了一个无穷系列的函数,这些函数定义在右边,是具有无限多无穷小对称性的任何方程的守恒密度。例如,函数 ∂f∂ux 必须是任何 KdV 型可积分方程 ut=uxxx+f(u,ux) 的守恒密度。这一事实对函数 f 的形式提出了非常苛刻的条件。在本文中,我们将为布西内斯克方程构建类似的典型密度。为此,我们将方程写成演化系统,并将 Mikhailov 等人(1987 年)提出的正式对角化程序推广到这些系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信