{"title":"Asymptotic distributions of the number of zeros of random polynomials in Hayes equivalence class over a finite field","authors":"Zhicheng Gao","doi":"10.1016/j.ffa.2024.102524","DOIUrl":null,"url":null,"abstract":"<div><div>Hayes equivalence is defined on monic polynomials over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> in terms of the prescribed leading coefficients and the residue classes modulo a given monic polynomial <em>Q</em>. We study the distribution of the number of zeros in a random polynomial over finite fields in a given Hayes equivalence class. It is well known that the number of distinct zeros of a random polynomial over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is asymptotically Poisson with mean 1. We show that this is also true for random polynomials in any given Hayes equivalence class. Asymptotic formulas are also given for the number of such polynomials when the degree of such polynomials is proportional to <em>q</em> and the degree of <em>Q</em> and the number of prescribed leading coefficients are bounded by <span><math><msqrt><mrow><mi>q</mi></mrow></msqrt></math></span>. When <span><math><mi>Q</mi><mo>=</mo><mn>1</mn></math></span>, the problem is equivalent to the study of the distance distribution in Reed-Solomon codes. Our asymptotic formulas extend some earlier results and imply that all words for a large family of Reed-Solomon codes are ordinary, which further supports the well-known <em>Deep-Hole</em> Conjecture.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102524"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001631","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hayes equivalence is defined on monic polynomials over a finite field in terms of the prescribed leading coefficients and the residue classes modulo a given monic polynomial Q. We study the distribution of the number of zeros in a random polynomial over finite fields in a given Hayes equivalence class. It is well known that the number of distinct zeros of a random polynomial over is asymptotically Poisson with mean 1. We show that this is also true for random polynomials in any given Hayes equivalence class. Asymptotic formulas are also given for the number of such polynomials when the degree of such polynomials is proportional to q and the degree of Q and the number of prescribed leading coefficients are bounded by . When , the problem is equivalent to the study of the distance distribution in Reed-Solomon codes. Our asymptotic formulas extend some earlier results and imply that all words for a large family of Reed-Solomon codes are ordinary, which further supports the well-known Deep-Hole Conjecture.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.