Jin Hoon Jang , Da Been Kim , Yeonsu Choi , Roshanzadeh Amir , Dae-Eun Cheong , Hea-Jong Chung , Sun-Hee Ahn , Geun-Joong Kim , Dong Wook Lee , Ok Ran Lee , Eung-Sam Kim
{"title":"Real-time monitoring of stromal NADPH levels in Arabidopsis using a metagenome-derived NADPH-binding fluorescent protein","authors":"Jin Hoon Jang , Da Been Kim , Yeonsu Choi , Roshanzadeh Amir , Dae-Eun Cheong , Hea-Jong Chung , Sun-Hee Ahn , Geun-Joong Kim , Dong Wook Lee , Ok Ran Lee , Eung-Sam Kim","doi":"10.1016/j.plaphy.2024.109260","DOIUrl":null,"url":null,"abstract":"<div><div>The light irradiation to the plant chloroplasts drives NADPH and ATP synthesis in the stroma via the electron transport chains within the thylakoid membranes. Conventional methods for assessing photosynthetic light reactions are often invasive or require specific conditions. While detection markers do not significantly affect plant growth itself, developing a method for the real-time and non-invasive detection of NADPH is a highly impactful and important research area in plant physiology and biochemistry. This study introduces a genetically encoded NADPH-binding blue fluorescent protein (mBFP) targeted to the chloroplast stroma or thylakoid membrane in <em>Arabidopsis thaliana</em> and <em>Nicotiana benthamiana</em>. Using two-photon microscopy, we monitored real-time stromal NADPH levels in transgenic leaves of Arabidopsis in response to light exposure. A mutant mBFP construct targeted to the thylakoid membrane allowed us to detect the stromal NADPH levels in real time under different light conditions. This <em>in planta</em> biosensor provides a non-invasive tool for studying photosynthetic responses to light more quantitatively and holds potential for optimizing light conditions in controlled-environment agriculture, such as indoor vertical farms, to improve crop productivity.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"217 ","pages":"Article 109260"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824009288","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The light irradiation to the plant chloroplasts drives NADPH and ATP synthesis in the stroma via the electron transport chains within the thylakoid membranes. Conventional methods for assessing photosynthetic light reactions are often invasive or require specific conditions. While detection markers do not significantly affect plant growth itself, developing a method for the real-time and non-invasive detection of NADPH is a highly impactful and important research area in plant physiology and biochemistry. This study introduces a genetically encoded NADPH-binding blue fluorescent protein (mBFP) targeted to the chloroplast stroma or thylakoid membrane in Arabidopsis thaliana and Nicotiana benthamiana. Using two-photon microscopy, we monitored real-time stromal NADPH levels in transgenic leaves of Arabidopsis in response to light exposure. A mutant mBFP construct targeted to the thylakoid membrane allowed us to detect the stromal NADPH levels in real time under different light conditions. This in planta biosensor provides a non-invasive tool for studying photosynthetic responses to light more quantitatively and holds potential for optimizing light conditions in controlled-environment agriculture, such as indoor vertical farms, to improve crop productivity.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.