Wenjie Mao , Bin Yu , Chen Zhang , A.K. Qin , Yu Xie
{"title":"FedKT: Federated learning with knowledge transfer for non-IID data","authors":"Wenjie Mao , Bin Yu , Chen Zhang , A.K. Qin , Yu Xie","doi":"10.1016/j.patcog.2024.111143","DOIUrl":null,"url":null,"abstract":"<div><div>Federated Learning enables clients to train a joint model collaboratively without disclosing raw data. However, learning over non-IID data may raise performance degeneration, which has become a fundamental bottleneck. Despite numerous efforts to address this issue, challenges such as excessive local computational burdens and reliance on shared data persist, rendering them impractical in real-world scenarios. In this paper, we propose a novel federated knowledge transfer framework to overcome data heterogeneity issues. Specifically, a model segmentation distillation method and a learnable aggregation network are developed for server-side knowledge ensemble and transfer, while a client-side consistency-constrained loss is devised to rectify local updates, thereby enhancing both global and client models. The framework considers both diversity and consistency among clients and can serve as a general solution for extracting knowledge from distributed nodes. Extensive experiments on four datasets demonstrate our framework’s effectiveness, achieving superior performance compared to advanced competitors in high-heterogeneity settings.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111143"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003132032400894X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Federated Learning enables clients to train a joint model collaboratively without disclosing raw data. However, learning over non-IID data may raise performance degeneration, which has become a fundamental bottleneck. Despite numerous efforts to address this issue, challenges such as excessive local computational burdens and reliance on shared data persist, rendering them impractical in real-world scenarios. In this paper, we propose a novel federated knowledge transfer framework to overcome data heterogeneity issues. Specifically, a model segmentation distillation method and a learnable aggregation network are developed for server-side knowledge ensemble and transfer, while a client-side consistency-constrained loss is devised to rectify local updates, thereby enhancing both global and client models. The framework considers both diversity and consistency among clients and can serve as a general solution for extracting knowledge from distributed nodes. Extensive experiments on four datasets demonstrate our framework’s effectiveness, achieving superior performance compared to advanced competitors in high-heterogeneity settings.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.