{"title":"Toward a fast and non-darkroom solution for speckle correlation based scattering imaging","authors":"","doi":"10.1016/j.optcom.2024.131274","DOIUrl":null,"url":null,"abstract":"<div><div>Speckle correlation-based scattering imaging is an ingenious field, as it allows for the efficient reconstruction of object images using computational techniques in a simple setup. However, this method typically necessitates high-contrast speckle images captured in a darkroom environment, restricting its applicability to specific scenarios. Here, we present a fast and non-darkroom imaging framework, namely FNDI, for reconstructing objects through scattering media under ambient light interference. Specifically, a speckle illumination model is established guided by the total variational Retinex (TV-Retinex) theory, and the speckle illumination component is adjusted to obtain an enhanced speckle with significantly improved contrast. Then, a modified Fienup algorithm with the iteration-driven shrinkwrap (IDS) strategy is employed to rapidly reconstruct the object image through tens of iterations. Extensive experiments are conducted under different lighting conditions to evaluate FNDI in comparison with existing non-darkroom methods and the classical speckle correlation method. The results demonstrate that FNDI is effective and efficient, making it highly attractive for practical scattering imaging applications.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824010113","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Speckle correlation-based scattering imaging is an ingenious field, as it allows for the efficient reconstruction of object images using computational techniques in a simple setup. However, this method typically necessitates high-contrast speckle images captured in a darkroom environment, restricting its applicability to specific scenarios. Here, we present a fast and non-darkroom imaging framework, namely FNDI, for reconstructing objects through scattering media under ambient light interference. Specifically, a speckle illumination model is established guided by the total variational Retinex (TV-Retinex) theory, and the speckle illumination component is adjusted to obtain an enhanced speckle with significantly improved contrast. Then, a modified Fienup algorithm with the iteration-driven shrinkwrap (IDS) strategy is employed to rapidly reconstruct the object image through tens of iterations. Extensive experiments are conducted under different lighting conditions to evaluate FNDI in comparison with existing non-darkroom methods and the classical speckle correlation method. The results demonstrate that FNDI is effective and efficient, making it highly attractive for practical scattering imaging applications.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.