Xueqing Lei , Haizhou Wu , Ling Liu , Jingnan Zhang , Ingrid Undeland
{"title":"Mechanistic insights to the strong antioxidative capacity of lingonberry press cake during recovery of fish protein ingredients","authors":"Xueqing Lei , Haizhou Wu , Ling Liu , Jingnan Zhang , Ingrid Undeland","doi":"10.1016/j.fufo.2024.100484","DOIUrl":null,"url":null,"abstract":"<div><div>Lingonberry press cake (LPC) has been shown to limit lipid oxidation in fish filleting co-products during pH-shift processing. To explore the underlying mechanism, this study subjected LPC to pH-shift processing (native pH → pH 12 → pH 5), and analyzed the resultant fractions for phenolic content and antioxidant capacity. It was observed that LPC experienced a 23.73 % reduction in total phenolic content (TPC) when the initial homogenate was adjusted to pH 12; however, no significant further losses were noted during centrifugation or subsequent adjustment to pH 5. Both LPC and the soluble fraction at pH 5 (“S2”) demonstrated effective inhibition of hemoglobin (Hb)-mediated lipid oxidation in washed cod mince (WCM) model system. Additionally, the insoluble fraction at pH 5 (“P2”) exhibited the strongest binding to WCM. Proanthocyanidin A1 and cyanidin 3-O-galactoside were identified as the most effective antioxidants in LPC. Overall, this study affirms LPC's value as an effective natural antioxidant ingredient in muscle foods and proposes an innovative strategy for valorizing multiple food side streams together to support sustainable development.</div></div>","PeriodicalId":34474,"journal":{"name":"Future Foods","volume":"10 ","pages":"Article 100484"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666833524001886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lingonberry press cake (LPC) has been shown to limit lipid oxidation in fish filleting co-products during pH-shift processing. To explore the underlying mechanism, this study subjected LPC to pH-shift processing (native pH → pH 12 → pH 5), and analyzed the resultant fractions for phenolic content and antioxidant capacity. It was observed that LPC experienced a 23.73 % reduction in total phenolic content (TPC) when the initial homogenate was adjusted to pH 12; however, no significant further losses were noted during centrifugation or subsequent adjustment to pH 5. Both LPC and the soluble fraction at pH 5 (“S2”) demonstrated effective inhibition of hemoglobin (Hb)-mediated lipid oxidation in washed cod mince (WCM) model system. Additionally, the insoluble fraction at pH 5 (“P2”) exhibited the strongest binding to WCM. Proanthocyanidin A1 and cyanidin 3-O-galactoside were identified as the most effective antioxidants in LPC. Overall, this study affirms LPC's value as an effective natural antioxidant ingredient in muscle foods and proposes an innovative strategy for valorizing multiple food side streams together to support sustainable development.
Future FoodsAgricultural and Biological Sciences-Food Science
CiteScore
8.60
自引率
0.00%
发文量
97
审稿时长
15 weeks
期刊介绍:
Future Foods is a specialized journal that is dedicated to tackling the challenges posed by climate change and the need for sustainability in the realm of food production. The journal recognizes the imperative to transform current food manufacturing and consumption practices to meet the dietary needs of a burgeoning global population while simultaneously curbing environmental degradation.
The mission of Future Foods is to disseminate research that aligns with the goal of fostering the development of innovative technologies and alternative food sources to establish more sustainable food systems. The journal is committed to publishing high-quality, peer-reviewed articles that contribute to the advancement of sustainable food practices.
Abstracting and indexing:
Scopus
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (ESCI)
SCImago Journal Rank (SJR)
SNIP