Upper bounds for the number of substructures in finite geometries from the container method

Pub Date : 2024-11-06 DOI:10.1016/j.jcta.2024.105968
Sam Mattheus, Geertrui Van de Voorde
{"title":"Upper bounds for the number of substructures in finite geometries from the container method","authors":"Sam Mattheus,&nbsp;Geertrui Van de Voorde","doi":"10.1016/j.jcta.2024.105968","DOIUrl":null,"url":null,"abstract":"<div><div>We use techniques from algebraic and extremal combinatorics to derive upper bounds on the number of independent sets in several (hyper)graphs arising from finite geometry. In this way, we obtain asymptotically sharp upper bounds for partial ovoids and EKR-sets of flags in polar spaces, line spreads in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> and plane spreads in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>5</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, and caps in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. The latter result extends work due to Roche-Newton and Warren <span><span>[21]</span></span> and Bhowmick and Roche-Newton <span><span>[6]</span></span>.</div><div>Finally, we investigate caps in <em>p</em>-random subsets of <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, which parallels recent work for arcs in projective planes by Bhowmick and Roche-Newton, and Roche-Newton and Warren <span><span>[6]</span></span>, <span><span>[21]</span></span>, and arcs in projective spaces by Chen, Liu, Nie and Zeng <span><span>[8]</span></span>.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524001079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use techniques from algebraic and extremal combinatorics to derive upper bounds on the number of independent sets in several (hyper)graphs arising from finite geometry. In this way, we obtain asymptotically sharp upper bounds for partial ovoids and EKR-sets of flags in polar spaces, line spreads in PG(2r1,q) and plane spreads in PG(5,q), and caps in PG(3,q). The latter result extends work due to Roche-Newton and Warren [21] and Bhowmick and Roche-Newton [6].
Finally, we investigate caps in p-random subsets of PG(r,q), which parallels recent work for arcs in projective planes by Bhowmick and Roche-Newton, and Roche-Newton and Warren [6], [21], and arcs in projective spaces by Chen, Liu, Nie and Zeng [8].
分享
查看原文
从容器法看有限几何中子结构数量的上界
我们利用代数和极值组合学的技术,推导出有限几何中若干(超)图中独立集数的上界。通过这种方法,我们得到了极空间中部分敖包和旌旗的 EKR 集、PG(2r-1,q) 中的线展和 PG(5,q) 中的面展以及 PG(3,q) 中的盖的渐近尖锐上界。最后,我们研究了 PG(r,q) 的 p 个随机子集中的盖,这与 Bhowmick 和 Roche-Newton 以及 Roche-Newton 和 Warren [6], [21] 最近针对投影平面中的弧所做的工作,以及 Chen, Liu, Nie 和 Zeng [8] 最近针对投影空间中的弧所做的工作相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信