Tong He , Shu-Jun Chen , Xi-Hui Diao , Yaseen Muhammad , Chao Chen , Hao Wang , Chuan-Song Qi , Wei Li
{"title":"Turn-on fluorescent sensors based on post-modified Zr-MOF for enantioselective recognition of phenylalanine","authors":"Tong He , Shu-Jun Chen , Xi-Hui Diao , Yaseen Muhammad , Chao Chen , Hao Wang , Chuan-Song Qi , Wei Li","doi":"10.1016/j.jssc.2024.125090","DOIUrl":null,"url":null,"abstract":"<div><div>Chiral enantiomers, particularly amino acids, frequently display distinct physiological activities and biological functions. Consequently, it is crucial to distinguish their absolute conformations. Herein, a pair of chiral sensors, UiO-L-Pro and UiO-D-Pro, were obtained by immobilizing the chiral center <span>l</span>-proline (L-Pro) and <span>d</span>-proline (D-Pro) into a Zr-based metal−organic framework (MOF) via a condensation reaction. Fluorescence analyses revealed a notable difference in the enhancement of fluorescence intensity between UiO-L-Pro and UiO-D-Pro when treated with <span>l</span>-phenylalanine (L-Phe) or <span>d</span>-phenylalanine (D-Phe), demonstrating enantioselective luminescence properties. Differences based on hydrogen bond interaction give them significant enantioselectivity factors α. The enantioselectivity factors α (α = K<sub>BH</sub>(D-Phe)/K<sub>BH</sub>(L-Phe)) for UiO-L-Pro and UiO-D-Pro were 4.15 and 0.47, respectively. Thus, the chiral material could be employed to identify different configurations of phenylalanine.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"341 ","pages":"Article 125090"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459624005449","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral enantiomers, particularly amino acids, frequently display distinct physiological activities and biological functions. Consequently, it is crucial to distinguish their absolute conformations. Herein, a pair of chiral sensors, UiO-L-Pro and UiO-D-Pro, were obtained by immobilizing the chiral center l-proline (L-Pro) and d-proline (D-Pro) into a Zr-based metal−organic framework (MOF) via a condensation reaction. Fluorescence analyses revealed a notable difference in the enhancement of fluorescence intensity between UiO-L-Pro and UiO-D-Pro when treated with l-phenylalanine (L-Phe) or d-phenylalanine (D-Phe), demonstrating enantioselective luminescence properties. Differences based on hydrogen bond interaction give them significant enantioselectivity factors α. The enantioselectivity factors α (α = KBH(D-Phe)/KBH(L-Phe)) for UiO-L-Pro and UiO-D-Pro were 4.15 and 0.47, respectively. Thus, the chiral material could be employed to identify different configurations of phenylalanine.
期刊介绍:
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.