A colorimetric and SERS-based LFIA for sensitive and simultaneous detection of three stroke biomarkers: An ultra-fast and sensitive point-of-care testing platform
Yutong Wang , Qianchun Zhang , Mengping Huang , Ganggang Ai , Xiaofeng Liu , Yuqi Zhang , Ran Li , Jie Wu
{"title":"A colorimetric and SERS-based LFIA for sensitive and simultaneous detection of three stroke biomarkers: An ultra-fast and sensitive point-of-care testing platform","authors":"Yutong Wang , Qianchun Zhang , Mengping Huang , Ganggang Ai , Xiaofeng Liu , Yuqi Zhang , Ran Li , Jie Wu","doi":"10.1016/j.talanta.2024.127166","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke ranks as the second leading cause of disability and mortality globally. Biomarker detection represents a promising avenue for predicting disease severity and prognosis. The expression levels of metalloproteinase-9 (MMP-9), neuron-specific enolase (NSE), and N-terminal pro-brain natriuretic peptide (NT-pro BNP) in blood correlate with stroke severity. Hence, monitoring these biomarkers is crucial for stroke diagnosis and management. Point-of-care testing (POCT) offers on-site diagnostic capabilities, with lateral flow immunoassay (LFIA) being the most widely used method currently. However, traditional LFIA sensitivity requires enhancement. This study introduces an ultra-sensitive surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of the three stroke biomarkers using SERS immune tags. Bimetallic core-shell structured SERS immune tags leverage the advantages of two metals, ensuring stability and enhancing Raman signals through plasmon resonance. This development of a POCT based on SERS-based LFIA strips offers rapid, sensitive, and multiplex detection of stroke biomarkers. The limits of detection (LODs) for MMP-9, NSE, and NT-pro BNP were 0.00020 ng mL<sup>−1</sup>, 0.00016 ng mL<sup>−1</sup>, and 0.00012 ng mL<sup>−1</sup>, respectively. Furthermore, enzyme-linked immunosorbent assay (ELISA) validated the accuracy of SERS-based LFIA. Clinical sample analysis demonstrated consistency between outcomes obtained by SERS-based LFIA and ELISA. Thus, SERS-based LFIA presents a novel POCT approach for stroke diagnosis.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"283 ","pages":"Article 127166"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914024015455","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke ranks as the second leading cause of disability and mortality globally. Biomarker detection represents a promising avenue for predicting disease severity and prognosis. The expression levels of metalloproteinase-9 (MMP-9), neuron-specific enolase (NSE), and N-terminal pro-brain natriuretic peptide (NT-pro BNP) in blood correlate with stroke severity. Hence, monitoring these biomarkers is crucial for stroke diagnosis and management. Point-of-care testing (POCT) offers on-site diagnostic capabilities, with lateral flow immunoassay (LFIA) being the most widely used method currently. However, traditional LFIA sensitivity requires enhancement. This study introduces an ultra-sensitive surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of the three stroke biomarkers using SERS immune tags. Bimetallic core-shell structured SERS immune tags leverage the advantages of two metals, ensuring stability and enhancing Raman signals through plasmon resonance. This development of a POCT based on SERS-based LFIA strips offers rapid, sensitive, and multiplex detection of stroke biomarkers. The limits of detection (LODs) for MMP-9, NSE, and NT-pro BNP were 0.00020 ng mL−1, 0.00016 ng mL−1, and 0.00012 ng mL−1, respectively. Furthermore, enzyme-linked immunosorbent assay (ELISA) validated the accuracy of SERS-based LFIA. Clinical sample analysis demonstrated consistency between outcomes obtained by SERS-based LFIA and ELISA. Thus, SERS-based LFIA presents a novel POCT approach for stroke diagnosis.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.