Integrated model of cerebellal supervised learning and basal ganglia’s reinforcement learning for mobile robot behavioral decision-making

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhiqiang Wu , Dongshu Wang , Lei Liu
{"title":"Integrated model of cerebellal supervised learning and basal ganglia’s reinforcement learning for mobile robot behavioral decision-making","authors":"Zhiqiang Wu ,&nbsp;Dongshu Wang ,&nbsp;Lei Liu","doi":"10.1016/j.cogsys.2024.101302","DOIUrl":null,"url":null,"abstract":"<div><div>Behavioral decision-making in unknown environments of mobile robots is a crucial research topic in robotics. Inspired by the working mechanism of different brain regions in mammals, this paper designed a new hybrid model integrating the functions of cerebellum and basal ganglia by simulating the memory replay of hippocampus, so as to realize the autonomous behavioral decision-making of robot in unknown environments. A reinforcement learning module based on Actor-Critic framework and a developmental network module are used to simulate the functions of the basal ganglia and cerebellum, respectively. Considering the different functions of D1 and D2 dopamine receptors in basal ganglia, an Actor network module with separate learning of positive and negative rewards is designed for the basal ganglia to realize efficient exploration of the environments by the agent. According to the characteristics of biological memory, a physiological memory priority index is designed for hippocampus memory replay, which improves the offline learning efficiency of cerebellum. The integrated model enables dynamic switching between decisions made by cerebellum and basal ganglia based on the agent’s cognitive level with respect to the environment. Finally, the effectiveness of the proposed model is verified through experiments on agent navigation in both simulation and real environments, as well as through performance comparison experiments with other learning algorithms.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Behavioral decision-making in unknown environments of mobile robots is a crucial research topic in robotics. Inspired by the working mechanism of different brain regions in mammals, this paper designed a new hybrid model integrating the functions of cerebellum and basal ganglia by simulating the memory replay of hippocampus, so as to realize the autonomous behavioral decision-making of robot in unknown environments. A reinforcement learning module based on Actor-Critic framework and a developmental network module are used to simulate the functions of the basal ganglia and cerebellum, respectively. Considering the different functions of D1 and D2 dopamine receptors in basal ganglia, an Actor network module with separate learning of positive and negative rewards is designed for the basal ganglia to realize efficient exploration of the environments by the agent. According to the characteristics of biological memory, a physiological memory priority index is designed for hippocampus memory replay, which improves the offline learning efficiency of cerebellum. The integrated model enables dynamic switching between decisions made by cerebellum and basal ganglia based on the agent’s cognitive level with respect to the environment. Finally, the effectiveness of the proposed model is verified through experiments on agent navigation in both simulation and real environments, as well as through performance comparison experiments with other learning algorithms.
用于移动机器人行为决策的小脑监督学习和基底神经节强化学习综合模型
移动机器人在未知环境中的行为决策是机器人学的一个重要研究课题。受哺乳动物不同脑区工作机制的启发,本文通过模拟海马的记忆重放,设计了一种整合小脑和基底节功能的新型混合模型,以实现机器人在未知环境中的自主行为决策。基于 Actor-Critic 框架的强化学习模块和发育网络模块分别用于模拟基底节和小脑的功能。考虑到基底节中多巴胺受体 D1 和 D2 的不同功能,为基底节设计了分别学习正负奖励的 Actor 网络模块,以实现机器人对环境的高效探索。根据生物记忆的特点,为海马记忆重放设计了生理记忆优先级指标,提高了小脑的离线学习效率。综合模型可根据代理对环境的认知水平,实现小脑和基底神经节决策的动态切换。最后,通过在模拟和真实环境中进行的代理导航实验,以及与其他学习算法的性能对比实验,验证了所提模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信