{"title":"Integrated model of cerebellal supervised learning and basal ganglia’s reinforcement learning for mobile robot behavioral decision-making","authors":"Zhiqiang Wu , Dongshu Wang , Lei Liu","doi":"10.1016/j.cogsys.2024.101302","DOIUrl":null,"url":null,"abstract":"<div><div>Behavioral decision-making in unknown environments of mobile robots is a crucial research topic in robotics. Inspired by the working mechanism of different brain regions in mammals, this paper designed a new hybrid model integrating the functions of cerebellum and basal ganglia by simulating the memory replay of hippocampus, so as to realize the autonomous behavioral decision-making of robot in unknown environments. A reinforcement learning module based on Actor-Critic framework and a developmental network module are used to simulate the functions of the basal ganglia and cerebellum, respectively. Considering the different functions of D1 and D2 dopamine receptors in basal ganglia, an Actor network module with separate learning of positive and negative rewards is designed for the basal ganglia to realize efficient exploration of the environments by the agent. According to the characteristics of biological memory, a physiological memory priority index is designed for hippocampus memory replay, which improves the offline learning efficiency of cerebellum. The integrated model enables dynamic switching between decisions made by cerebellum and basal ganglia based on the agent’s cognitive level with respect to the environment. Finally, the effectiveness of the proposed model is verified through experiments on agent navigation in both simulation and real environments, as well as through performance comparison experiments with other learning algorithms.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"88 ","pages":"Article 101302"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000962","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Behavioral decision-making in unknown environments of mobile robots is a crucial research topic in robotics. Inspired by the working mechanism of different brain regions in mammals, this paper designed a new hybrid model integrating the functions of cerebellum and basal ganglia by simulating the memory replay of hippocampus, so as to realize the autonomous behavioral decision-making of robot in unknown environments. A reinforcement learning module based on Actor-Critic framework and a developmental network module are used to simulate the functions of the basal ganglia and cerebellum, respectively. Considering the different functions of D1 and D2 dopamine receptors in basal ganglia, an Actor network module with separate learning of positive and negative rewards is designed for the basal ganglia to realize efficient exploration of the environments by the agent. According to the characteristics of biological memory, a physiological memory priority index is designed for hippocampus memory replay, which improves the offline learning efficiency of cerebellum. The integrated model enables dynamic switching between decisions made by cerebellum and basal ganglia based on the agent’s cognitive level with respect to the environment. Finally, the effectiveness of the proposed model is verified through experiments on agent navigation in both simulation and real environments, as well as through performance comparison experiments with other learning algorithms.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.