Israel F. Cardoso , Raí F. Jucá , Francisco G.S. Oliveira , Igor F. Vasconcelos , Gilberto D. Saraiva , Meirielle M. de Góis , Vinicius P.S. Caldeira , Keurison F. Magalhães , João M. Soares
{"title":"Asperomagnetism and speromagnetism in magnetic aluminosilicate glasses","authors":"Israel F. Cardoso , Raí F. Jucá , Francisco G.S. Oliveira , Igor F. Vasconcelos , Gilberto D. Saraiva , Meirielle M. de Góis , Vinicius P.S. Caldeira , Keurison F. Magalhães , João M. Soares","doi":"10.1016/j.jnoncrysol.2024.123285","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, we make use of mineral waste composite with elemental composition of Si, Al, Ca, Mg, K and Fe to synthesize magnetic aluminosilicate glasses (MAGlass). The produced MAGlass presented interesting magnetic and optical properties due to the presence of iron with different valence states. The elemental composition was measured by X-ray fluorescence spectroscopy. X-ray diffraction analysis confirmed the glass amorphous nature. Thermal properties such as glass transition temperature and thermal stability were analyzed by differential scanning calorimetry. The nature of the glass chemical bond structure was studied by FT-Raman analysis. UV–Vis spectroscopy studied the transmittance and absorbance in each sample, approaching the main electronic transitions, Racah parameters and gap energy. Mössbauer and magnetization measurements showed different iron valency states and interesting asperomagnetism and speromagnetism behaviors, with variations among the Fe<sup>2+</sup> and Fe<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn><mo>+</mo></mrow></msup></math></span> in the MAGlass samples.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"647 ","pages":"Article 123285"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309324004617","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, we make use of mineral waste composite with elemental composition of Si, Al, Ca, Mg, K and Fe to synthesize magnetic aluminosilicate glasses (MAGlass). The produced MAGlass presented interesting magnetic and optical properties due to the presence of iron with different valence states. The elemental composition was measured by X-ray fluorescence spectroscopy. X-ray diffraction analysis confirmed the glass amorphous nature. Thermal properties such as glass transition temperature and thermal stability were analyzed by differential scanning calorimetry. The nature of the glass chemical bond structure was studied by FT-Raman analysis. UV–Vis spectroscopy studied the transmittance and absorbance in each sample, approaching the main electronic transitions, Racah parameters and gap energy. Mössbauer and magnetization measurements showed different iron valency states and interesting asperomagnetism and speromagnetism behaviors, with variations among the Fe2+ and Fe in the MAGlass samples.
期刊介绍:
The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid.
In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.