Narendra Kumar Meena , Firoz Khan , Yaspal Sundriyal , Robert James Wasson , Pankaj Kumar , Rajveer Sharma
{"title":"Holocene paleoclimatic records from Chakrata area, Northwest Himalaya","authors":"Narendra Kumar Meena , Firoz Khan , Yaspal Sundriyal , Robert James Wasson , Pankaj Kumar , Rajveer Sharma","doi":"10.1016/j.quaint.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><div>We present monsoon variability records for the Holocene using multi-proxy approach (environmental magnetism, carbon isotope, and total organic carbon) from a 146 cm thick sedimentary profile in the Kotikanasar meadow (Chakrata), Northwest Himalaya. The chronology of the record was constrained by five AMS <sup>14</sup>C ages. The carbon isotope (δ<sup>13</sup>C) and Total Organic Carbon (TOC) data highly variable which vary between −26.62‰ and −22.46‰ (C<sub>3</sub>-plants) and 0.1–∼4%, respectively, indicating paleo-vegetation history and productivity of the studied area. The environmental magnetism is highly fluctuating in the Early Holocene with high concentrations of magnetic minerals during the high monsoon conditions and <em>vice-versa</em>. Intense Indian Summer Monsoon (ISM) phases were identified during the Early and Late Holocene i.e., ∼9.2 to 7.4 ka, and ∼4.8 ka to Modern which shows warm and wet climate. While decline in the ISM intensity during ∼7.4 to 4.8 ka which indicates cold and dry climatic condition in the Northwest Himalayan regions. From ∼9.2 to 7.4 ka, highly fluctuating climate linked with the Early Holocene warming. Sediment profile exhibits aridity in climate accompanying with the high influence of mid-latitude westerlies during ∼7.4 to 4.8 ka from Northwest Indian regions. Hence the long-term fluctuation in the climate governed by the changes in the North Atlantic Ocean circulation as well as variations in the incoming solar radiations.</div></div>","PeriodicalId":49644,"journal":{"name":"Quaternary International","volume":"709 ","pages":"Pages 43-54"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary International","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1040618224002660","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present monsoon variability records for the Holocene using multi-proxy approach (environmental magnetism, carbon isotope, and total organic carbon) from a 146 cm thick sedimentary profile in the Kotikanasar meadow (Chakrata), Northwest Himalaya. The chronology of the record was constrained by five AMS 14C ages. The carbon isotope (δ13C) and Total Organic Carbon (TOC) data highly variable which vary between −26.62‰ and −22.46‰ (C3-plants) and 0.1–∼4%, respectively, indicating paleo-vegetation history and productivity of the studied area. The environmental magnetism is highly fluctuating in the Early Holocene with high concentrations of magnetic minerals during the high monsoon conditions and vice-versa. Intense Indian Summer Monsoon (ISM) phases were identified during the Early and Late Holocene i.e., ∼9.2 to 7.4 ka, and ∼4.8 ka to Modern which shows warm and wet climate. While decline in the ISM intensity during ∼7.4 to 4.8 ka which indicates cold and dry climatic condition in the Northwest Himalayan regions. From ∼9.2 to 7.4 ka, highly fluctuating climate linked with the Early Holocene warming. Sediment profile exhibits aridity in climate accompanying with the high influence of mid-latitude westerlies during ∼7.4 to 4.8 ka from Northwest Indian regions. Hence the long-term fluctuation in the climate governed by the changes in the North Atlantic Ocean circulation as well as variations in the incoming solar radiations.
期刊介绍:
Quaternary International is the official journal of the International Union for Quaternary Research. The objectives are to publish a high quality scientific journal under the auspices of the premier Quaternary association that reflects the interdisciplinary nature of INQUA and records recent advances in Quaternary science that appeal to a wide audience.
This series will encompass all the full spectrum of the physical and natural sciences that are commonly employed in solving Quaternary problems. The policy is to publish peer refereed collected research papers from symposia, workshops and meetings sponsored by INQUA. In addition, other organizations may request publication of their collected works pertaining to the Quaternary.