Denis Mutebi , Frantisek Miksik , Andrew M. Spring , Indri Yaningsih , Takahiko Miyazaki , Kyaw Thu
{"title":"Optimization of conventional-zeolite-synthesis from waste pumice for water adsorption","authors":"Denis Mutebi , Frantisek Miksik , Andrew M. Spring , Indri Yaningsih , Takahiko Miyazaki , Kyaw Thu","doi":"10.1016/j.apt.2024.104713","DOIUrl":null,"url":null,"abstract":"<div><div>This research reports conventionally-synthesized-zeolites with comparatively large surface area (SSA) and water-uptake prepared solely from waste-pumice. Notably, the synthesis process avoided using additional commercial raw materials, organic templates, and high temperatures, so that the process was less costly and ecofriendly. To optimize the process, the synthesis time was varied, and the mixture of the raw material and alkaline solution was stirred for 12 h. The zeolite mother liquor was also recycled. Water adsorption experiments were carried out using gravimetric measurements. The Na-P1-rich zeolite product with an optimal water uptake of 0.256 g/g was synthesized after 48 h of hydrothermal activation (H). On the other hand, the product’s optimal SSA of 186 m<sup>2</sup>/g was achieved after 36H under similar conditions (rich in faujasite). Adsorption isotherms showed that water uptake increased with activation time and with the inclusion of mother liquor recycling. Furthermore, recycling resulted in a product with enhanced SSA compared to its precursor. Un-recycled products exhibited relatively high-water uptake both at low and high relative-pressure, while the recycled product had a high uptake at high relative pressure. All products could be used in adsorption heat pump (AHP) applications (air conditioning) suited for high relative humidity (RH) environments. However, high-synthesis-time non-recycled products could also work for low RH AHP applications.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124003893","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This research reports conventionally-synthesized-zeolites with comparatively large surface area (SSA) and water-uptake prepared solely from waste-pumice. Notably, the synthesis process avoided using additional commercial raw materials, organic templates, and high temperatures, so that the process was less costly and ecofriendly. To optimize the process, the synthesis time was varied, and the mixture of the raw material and alkaline solution was stirred for 12 h. The zeolite mother liquor was also recycled. Water adsorption experiments were carried out using gravimetric measurements. The Na-P1-rich zeolite product with an optimal water uptake of 0.256 g/g was synthesized after 48 h of hydrothermal activation (H). On the other hand, the product’s optimal SSA of 186 m2/g was achieved after 36H under similar conditions (rich in faujasite). Adsorption isotherms showed that water uptake increased with activation time and with the inclusion of mother liquor recycling. Furthermore, recycling resulted in a product with enhanced SSA compared to its precursor. Un-recycled products exhibited relatively high-water uptake both at low and high relative-pressure, while the recycled product had a high uptake at high relative pressure. All products could be used in adsorption heat pump (AHP) applications (air conditioning) suited for high relative humidity (RH) environments. However, high-synthesis-time non-recycled products could also work for low RH AHP applications.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)