Yu Ning , Shuailin Li , Chuanchuan Ning , Jinfeng Ren , Zhuqing Xia , Mengmeng Zhu , Yun Gao , Xinhui Zhang , Qiang Ma , Wantai Yu
{"title":"Effects of exogenous nitrogen addition on soil organic nitrogen fractions in different fertility soils: Result from a 15N cross-labeling experiment","authors":"Yu Ning , Shuailin Li , Chuanchuan Ning , Jinfeng Ren , Zhuqing Xia , Mengmeng Zhu , Yun Gao , Xinhui Zhang , Qiang Ma , Wantai Yu","doi":"10.1016/j.agee.2024.109366","DOIUrl":null,"url":null,"abstract":"<div><div>Exogenous nitrogen (N) addition serves as a pivotal nutrient management strategy, significantly enhancing agricultural production by regulating soil N availability and retention. However, the dynamics of soil organic nitrogen (SON) fractions in response to various forms of exogenous N addition across differing soil fertility levels remain inadequately understood. This study utilized data from a 25-year fertilization experiment and a <sup>15</sup>N cross-labeling experiment in Northeast China to assess and quantify the effects of mineral N fertilizers and organic materials (manure and straw) on SON fractions in NPK (mineral fertilizer addition) and NPKM (NPK combined with composted pig manure) treatments. Our findings indicate that long-term incorporation of manure substantially elevates soil fertility compared to the exclusive use of mineral fertilizers. Notably, exogenous N primarily boosts soil N availability by enhancing acid-soluble organic N fractions, particularly ammonium nitrogen (AN) and amino acid nitrogen (AAN). Organic materials, particularly straw, significantly enhanced the retention of mineral fertilizer N in both NPK and NPKM treatments (9.54 % vs 10.70 %). Moreover, over 70 % of the N from straw or manure remained in the soil as stable SON fractions. While straw rapidly improves low-fertility soils, manure contributes to enhanced soil N reserves and increased crop yields. Therefore, incorporating organic matter may bolster soil N sequestration in Northeast China, which is contingent upon soil fertility and tailored fertilizer management strategies. This research elucidates the distribution and conversion of exogenous N within SON pools, facilitating optimized N management, sustaining yields, reducing farmland N pollution, and promoting agricultural sustainability.</div></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"379 ","pages":"Article 109366"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture, Ecosystems & Environment","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167880924004845","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Exogenous nitrogen (N) addition serves as a pivotal nutrient management strategy, significantly enhancing agricultural production by regulating soil N availability and retention. However, the dynamics of soil organic nitrogen (SON) fractions in response to various forms of exogenous N addition across differing soil fertility levels remain inadequately understood. This study utilized data from a 25-year fertilization experiment and a 15N cross-labeling experiment in Northeast China to assess and quantify the effects of mineral N fertilizers and organic materials (manure and straw) on SON fractions in NPK (mineral fertilizer addition) and NPKM (NPK combined with composted pig manure) treatments. Our findings indicate that long-term incorporation of manure substantially elevates soil fertility compared to the exclusive use of mineral fertilizers. Notably, exogenous N primarily boosts soil N availability by enhancing acid-soluble organic N fractions, particularly ammonium nitrogen (AN) and amino acid nitrogen (AAN). Organic materials, particularly straw, significantly enhanced the retention of mineral fertilizer N in both NPK and NPKM treatments (9.54 % vs 10.70 %). Moreover, over 70 % of the N from straw or manure remained in the soil as stable SON fractions. While straw rapidly improves low-fertility soils, manure contributes to enhanced soil N reserves and increased crop yields. Therefore, incorporating organic matter may bolster soil N sequestration in Northeast China, which is contingent upon soil fertility and tailored fertilizer management strategies. This research elucidates the distribution and conversion of exogenous N within SON pools, facilitating optimized N management, sustaining yields, reducing farmland N pollution, and promoting agricultural sustainability.
期刊介绍:
Agriculture, Ecosystems and Environment publishes scientific articles dealing with the interface between agroecosystems and the natural environment, specifically how agriculture influences the environment and how changes in that environment impact agroecosystems. Preference is given to papers from experimental and observational research at the field, system or landscape level, from studies that enhance our understanding of processes using data-based biophysical modelling, and papers that bridge scientific disciplines and integrate knowledge. All papers should be placed in an international or wide comparative context.