Bioactive MXene hydrogel promotes structural and functional regeneration of skeletal muscle through improving autophagy and muscle innervation

Q1 Engineering
Li Zhou , Haixia Zhuang , Xinyu Ye , Wei Yuan , Kai Wang , Donghan Hu , Xiangya Luo , Qiuyu Zhang
{"title":"Bioactive MXene hydrogel promotes structural and functional regeneration of skeletal muscle through improving autophagy and muscle innervation","authors":"Li Zhou ,&nbsp;Haixia Zhuang ,&nbsp;Xinyu Ye ,&nbsp;Wei Yuan ,&nbsp;Kai Wang ,&nbsp;Donghan Hu ,&nbsp;Xiangya Luo ,&nbsp;Qiuyu Zhang","doi":"10.1016/j.smaim.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>Complete skeletal muscle regeneration after traumatic injuries remains a challenge due to impaired regenerative capability and dysregulated microenvironments. Autophagy plays a crucial role in the muscle regeneration process by regulating myogenic and non-myogenic cells. Herein, we report a bioactive MXene hydrogel (FPGM) capable of upregulating autophagy and increasing muscle innervation to restore skeletal muscle structure and function. FPGM possessed excellent electrical conductivity, tissue adhesive ability and antioxidation, which could eliminate excess reactive oxygen species to reduce oxidative stress and decrease the secretion of pro-inflammatory cytokine. FPGM upregulated the autophagy level of myoblasts and promoted the migration and tube formation of endothelial cells as well as myogenic differentiation with negligible toxicity. FPGM accelerated muscle fiber formation and skeletal muscle regeneration by improving autophagy, which could regulate microenvironment through raising M2 macrophages to alleviate excessive inflammation, facilitating angiogenesis and decreasing fibrous scar tissue formation <em>in vivo</em>. Importantly, FPGM could efficiently restore muscle function by improving muscle innervation, tibialis anterior compound muscle action potential amplitude and neuromuscular conduction. This work demonstrates that bioactive MXene hydrogel should be a promising candidate for complete skeletal muscle regeneration.</div></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183424000516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Complete skeletal muscle regeneration after traumatic injuries remains a challenge due to impaired regenerative capability and dysregulated microenvironments. Autophagy plays a crucial role in the muscle regeneration process by regulating myogenic and non-myogenic cells. Herein, we report a bioactive MXene hydrogel (FPGM) capable of upregulating autophagy and increasing muscle innervation to restore skeletal muscle structure and function. FPGM possessed excellent electrical conductivity, tissue adhesive ability and antioxidation, which could eliminate excess reactive oxygen species to reduce oxidative stress and decrease the secretion of pro-inflammatory cytokine. FPGM upregulated the autophagy level of myoblasts and promoted the migration and tube formation of endothelial cells as well as myogenic differentiation with negligible toxicity. FPGM accelerated muscle fiber formation and skeletal muscle regeneration by improving autophagy, which could regulate microenvironment through raising M2 macrophages to alleviate excessive inflammation, facilitating angiogenesis and decreasing fibrous scar tissue formation in vivo. Importantly, FPGM could efficiently restore muscle function by improving muscle innervation, tibialis anterior compound muscle action potential amplitude and neuromuscular conduction. This work demonstrates that bioactive MXene hydrogel should be a promising candidate for complete skeletal muscle regeneration.

Abstract Image

生物活性 MXene 水凝胶通过改善自噬和肌肉神经支配促进骨骼肌的结构和功能再生
由于再生能力受损和微环境失调,创伤后骨骼肌的完全再生仍是一项挑战。自噬通过调节成肌细胞和非成肌细胞,在肌肉再生过程中发挥着至关重要的作用。在此,我们报告了一种生物活性 MXene 水凝胶(FPGM),它能够上调自噬并增加肌肉神经支配,从而恢复骨骼肌的结构和功能。FPGM具有良好的导电性、组织粘附性和抗氧化性,能消除过量的活性氧,从而降低氧化应激,减少促炎细胞因子的分泌。FPGM 能提高成肌细胞的自噬水平,促进内皮细胞的迁移和管形成,并促进成肌细胞的分化,其毒性几乎可以忽略不计。FPGM可通过提高自噬水平加速肌纤维的形成和骨骼肌的再生,并可通过提高M2巨噬细胞来调节微环境,从而缓解过度炎症,促进血管生成,减少体内纤维瘢痕组织的形成。重要的是,FPGM 可通过改善肌肉神经支配、胫骨前复合肌动作电位振幅和神经肌肉传导,有效恢复肌肉功能。这项研究表明,生物活性 MXene 水凝胶有望成为骨骼肌完全再生的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信