{"title":"Longitudinal wave propagation in a practical metamaterial lattice","authors":"","doi":"10.1016/j.wavemoti.2024.103431","DOIUrl":null,"url":null,"abstract":"<div><div>A practical metamaterial lattice is constructed by integrating curved beams, four-link mechanisms, and cantilever beams with lumped masses. It can generate two complete low-frequency bandgaps due to the lateral local resonance, inertia mass, and the main chain. The effective mass density and stiffness are obtained using different effective models, which show negative within the bandgaps. The analysis of the energy distribution and the space wave attenuation reveals that the metamaterial can attenuate the elastic waves in an exponential form within the bandgaps along the lattice. The finite element model is established to show the dynamic behaviour of the elastic wave propagation in the frequency domain and transient domain. Both results show that waves can be efficiently blocked within the bandgaps, while outside the bandgaps, waves can propagate without any attenuation. Finally, the experimental model of practical metamaterial is constructed, and the test piece is excited by a force hammer. Experimental results verify that the practical metamaterial can efficiently suppress the vibration within the bandgap frequency and validate the accuracy of the theoretical prediction.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001616","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A practical metamaterial lattice is constructed by integrating curved beams, four-link mechanisms, and cantilever beams with lumped masses. It can generate two complete low-frequency bandgaps due to the lateral local resonance, inertia mass, and the main chain. The effective mass density and stiffness are obtained using different effective models, which show negative within the bandgaps. The analysis of the energy distribution and the space wave attenuation reveals that the metamaterial can attenuate the elastic waves in an exponential form within the bandgaps along the lattice. The finite element model is established to show the dynamic behaviour of the elastic wave propagation in the frequency domain and transient domain. Both results show that waves can be efficiently blocked within the bandgaps, while outside the bandgaps, waves can propagate without any attenuation. Finally, the experimental model of practical metamaterial is constructed, and the test piece is excited by a force hammer. Experimental results verify that the practical metamaterial can efficiently suppress the vibration within the bandgap frequency and validate the accuracy of the theoretical prediction.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.