Highly porous MOF integrated with coordination polymer glass membrane for efficient CO2/N2 separation

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Ning Li , Chao Ma , Ziyue Wang , Dudu Li , Zhihua Qiao , Chongli Zhong
{"title":"Highly porous MOF integrated with coordination polymer glass membrane for efficient CO2/N2 separation","authors":"Ning Li ,&nbsp;Chao Ma ,&nbsp;Ziyue Wang ,&nbsp;Dudu Li ,&nbsp;Zhihua Qiao ,&nbsp;Chongli Zhong","doi":"10.1016/j.memsci.2024.123453","DOIUrl":null,"url":null,"abstract":"<div><div>The MOF crystal-glass composites (CGC) membrane, comprising a MOF crystal and MOF glass matrix, represents a novel self-supported membrane that has been effectively applied in gas separation. Nevertheless, the typical MOF glass matrix requires a higher operating temperature (&gt;400 °C), which constrains its combination with a multitude of MOF crystals characterized by high porosity and low decomposition. In this work, Zn–P-dmbIm (coordination polymer) was chosen as the glass matrix, and MIL-101 crystal with high porosity were integrated at an operating temperature of 190 °C. Furthermore, the intrinsic low porosity of <em>a</em><sub><em>g</em></sub>Zn-P-dmbIm can be enhanced by the incorporation of higher porosity MIL-101, which possessed a high specific surface area (from ∼1.7 m<sup>2</sup>/g to 401 m<sup>2</sup>/g) and porosity (from ∼0.0014 cm³/g/nm to 0.5605 cm³/g/nm) of the CGC. The intimate combination of MIL-101 and <em>a</em><sub>g</sub>Zn-P-dmbIm by <em>in</em>-<em>situ</em> melting to reduce the interfacial defects, which also provides a robust foundation for effective CO<sub>2</sub>/N<sub>2</sub> separation. In CO₂/N₂ (50/50, v/v) mixed gas conditions, the MIL-101/<em>a</em><sub><em>g</em></sub>Zn-P-dmbIm membrane demonstrated a impressively high CO₂ permeability of 18670 barrer and CO₂/N₂ selectivity of 61, exceeding the CO₂/N₂ upper bound. The variable pressure (1–12 bar) and long-term stability (120 h) of the CGC membrane exhibited enhancing separation stability. Hence, the self-supported MIL-101/<em>a</em><sub><em>g</em></sub>Zn-P-dmbIm membrane demonstrated effective CO₂/N₂ separation performance, which had the potential to significantly extend the scope of applications for MOF crystal-glass matrices.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123453"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010470","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The MOF crystal-glass composites (CGC) membrane, comprising a MOF crystal and MOF glass matrix, represents a novel self-supported membrane that has been effectively applied in gas separation. Nevertheless, the typical MOF glass matrix requires a higher operating temperature (>400 °C), which constrains its combination with a multitude of MOF crystals characterized by high porosity and low decomposition. In this work, Zn–P-dmbIm (coordination polymer) was chosen as the glass matrix, and MIL-101 crystal with high porosity were integrated at an operating temperature of 190 °C. Furthermore, the intrinsic low porosity of agZn-P-dmbIm can be enhanced by the incorporation of higher porosity MIL-101, which possessed a high specific surface area (from ∼1.7 m2/g to 401 m2/g) and porosity (from ∼0.0014 cm³/g/nm to 0.5605 cm³/g/nm) of the CGC. The intimate combination of MIL-101 and agZn-P-dmbIm by in-situ melting to reduce the interfacial defects, which also provides a robust foundation for effective CO2/N2 separation. In CO₂/N₂ (50/50, v/v) mixed gas conditions, the MIL-101/agZn-P-dmbIm membrane demonstrated a impressively high CO₂ permeability of 18670 barrer and CO₂/N₂ selectivity of 61, exceeding the CO₂/N₂ upper bound. The variable pressure (1–12 bar) and long-term stability (120 h) of the CGC membrane exhibited enhancing separation stability. Hence, the self-supported MIL-101/agZn-P-dmbIm membrane demonstrated effective CO₂/N₂ separation performance, which had the potential to significantly extend the scope of applications for MOF crystal-glass matrices.

Abstract Image

高多孔 MOF 与配位聚合物玻璃膜集成,用于高效分离 CO2/N2
由 MOF 晶体和 MOF 玻璃基质组成的 MOF 晶体-玻璃复合材料 (CGC) 膜是一种新型自支撑膜,已被有效地应用于气体分离领域。然而,典型的 MOF 玻璃基质需要较高的工作温度(400 °C),这就限制了它与具有高孔隙率和低分解率特点的多种 MOF 晶体的结合。在这项工作中,选择了 Zn-P-dmbIm(配位聚合物)作为玻璃基质,并在 190 °C 的工作温度下与具有高孔隙率的 MIL-101 晶体结合。此外,AgZn-P-dmbIm 固有的低孔隙率可以通过加入孔隙率较高的 MIL-101 来增强,MIL-101 具有较高的比表面积(从 ∼ 1.7 m2/g 到 401 m2/g)和孔隙率(从 ∼ 0.0014 cm³/g/nm 到 0.5605 cm³/g/nm)。MIL-101 和 agZn-P-dmbIm 通过原位熔化紧密结合,减少了界面缺陷,这也为有效分离 CO2/N2 提供了坚实的基础。在 CO₂/N₂(50/50,v/v)混合气体条件下,MIL-101/agZn-P-dmbIm 膜的 CO₂ 渗透率高达 18670 barrer,CO₂/N₂ 选择性为 61,超过了 CO₂/N₂ 上限。CGC 膜的可变压力(1-12 巴)和长期稳定性(120 小时)显示出更强的分离稳定性。因此,自支撑 MIL-101/agZn-P-dmbIm 膜表现出了有效的 CO₂/N₂ 分离性能,有望显著扩展 MOF 晶体玻璃基质的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信