{"title":"COF-derived hierarchical porous N,O dual-doped carbon nanosheets towards efficient aqueous Zn-ion supercapacitor with long lifespan","authors":"","doi":"10.1016/j.est.2024.114411","DOIUrl":null,"url":null,"abstract":"<div><div>Designing and precisely constructing novel carbon-based cathodes with a high specific surface area (SSA), excellent stability, and abundant active sites is critical for achieving high-performance zinc-ion hybrid capacitors (ZHCs). Covalent organic frameworks (COFs), a class of well-defined crystalline porous polymer materials, can integrate organic building blocks into highly ordered topological structure, offering a robust platform for specific structural design and versatile functional exploitation. In this study, hierarchical porous carbon nanosheets (PCs) with high conductivity and abundant heteroatom doping were synthesized through an in situ polycondensation reaction followed by high-temperature carbonization. This unique structure facilitates the diffusion of electrolyte ions and the adsorption/desorption of Zn<sup>2+</sup> ions. As a result, the optimized PC-1000 electrode demonstrates a high specific capacity of 168.9 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> and remarkable stability, maintaining a high capacity retention rate of 102.5 % after more than 50,000 cycles at 10 A g<sup>−1</sup>, outperforming other PC-based materials reported in the literature. This work provides an effective way for developing carbon-based cathode materials for high-performance energy storage devices.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24039975","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Designing and precisely constructing novel carbon-based cathodes with a high specific surface area (SSA), excellent stability, and abundant active sites is critical for achieving high-performance zinc-ion hybrid capacitors (ZHCs). Covalent organic frameworks (COFs), a class of well-defined crystalline porous polymer materials, can integrate organic building blocks into highly ordered topological structure, offering a robust platform for specific structural design and versatile functional exploitation. In this study, hierarchical porous carbon nanosheets (PCs) with high conductivity and abundant heteroatom doping were synthesized through an in situ polycondensation reaction followed by high-temperature carbonization. This unique structure facilitates the diffusion of electrolyte ions and the adsorption/desorption of Zn2+ ions. As a result, the optimized PC-1000 electrode demonstrates a high specific capacity of 168.9 mAh g−1 at 0.1 A g−1 and remarkable stability, maintaining a high capacity retention rate of 102.5 % after more than 50,000 cycles at 10 A g−1, outperforming other PC-based materials reported in the literature. This work provides an effective way for developing carbon-based cathode materials for high-performance energy storage devices.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.