Preparation and Performance study of covalently polymerized dust suppressant via Maillard reaction

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Wu Baoyang , Song Shaofu , Liu Jurong , Zhang Yanni , Huang Yunfeng
{"title":"Preparation and Performance study of covalently polymerized dust suppressant via Maillard reaction","authors":"Wu Baoyang ,&nbsp;Song Shaofu ,&nbsp;Liu Jurong ,&nbsp;Zhang Yanni ,&nbsp;Huang Yunfeng","doi":"10.1016/j.powtec.2024.120409","DOIUrl":null,"url":null,"abstract":"<div><div>To effectively address coal dust pollution, the amino group (−NH<sub>2</sub>) in soy protein isolate was reacted with the carbonyl group (C=O) produced by corn starch through the Maillard reaction, overcoming the disadvantages of the existing modification methods such as sophisticated process and toxic monomer, and the optimal surfactant was determined to be SDBS by sedimentation experiments, an environmentally friendly polyhydroxy dust suppressant with both wetting and coagulation functions was finally prepared. The structural changes of the product, the reaction mechanism, and the microscopic morphology of the coal were analyzed by FTIR, XRD, and SEM. The large amount of hydroxyl groups (-OH) contained in the dust suppressant, combined with the oxygen-containing groups of the coal dust, is able to form hydrogen bonds, which promotes the agglomeration of the coal dust. The wind erosion resistance rates of this dust suppressant were 99.87 % and 99.01 % at wind speeds of 6 m/s and 12 m/s, respectively.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120409"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010532","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To effectively address coal dust pollution, the amino group (−NH2) in soy protein isolate was reacted with the carbonyl group (C=O) produced by corn starch through the Maillard reaction, overcoming the disadvantages of the existing modification methods such as sophisticated process and toxic monomer, and the optimal surfactant was determined to be SDBS by sedimentation experiments, an environmentally friendly polyhydroxy dust suppressant with both wetting and coagulation functions was finally prepared. The structural changes of the product, the reaction mechanism, and the microscopic morphology of the coal were analyzed by FTIR, XRD, and SEM. The large amount of hydroxyl groups (-OH) contained in the dust suppressant, combined with the oxygen-containing groups of the coal dust, is able to form hydrogen bonds, which promotes the agglomeration of the coal dust. The wind erosion resistance rates of this dust suppressant were 99.87 % and 99.01 % at wind speeds of 6 m/s and 12 m/s, respectively.

Abstract Image

通过 Maillard 反应制备共价聚合抑尘剂及其性能研究
为有效解决煤尘污染问题,通过马氏反应将大豆分离蛋白中的氨基(-NH2)与玉米淀粉产生的羰基(C=O)反应,克服了现有改性方法工艺复杂、单体有毒等缺点,并通过沉降实验确定最佳表面活性剂为SDBS,最终制备出了一种兼具润湿和凝固功能的环境友好型多羟基抑尘剂。通过傅立叶变换红外光谱、X射线衍射和扫描电镜分析了产物的结构变化、反应机理和煤的微观形貌。抑尘剂中含有的大量羟基(-OH)与煤尘中的含氧基团结合,能够形成氢键,促进煤尘的团聚。在风速为 6 米/秒和 12 米/秒时,该抑尘剂的抗风侵蚀率分别为 99.87 % 和 99.01 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信