{"title":"On the functor of comonotonically maxitive functionals","authors":"Taras Radul","doi":"10.1016/j.topol.2024.109131","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a functor of functionals that preserve the maximum of comonotone functions and the addition of constants. This functor is a subfunctor of the functor of order-preserving functionals and includes the idempotent measure functor as a subfunctor. The main aim of this paper is to demonstrate that this functor is isomorphic to the capacity functor. We establish this isomorphism using the fuzzy max-plus integral. In essence, this result can be viewed as an idempotent analogue of the Riesz Theorem, which establishes a correspondence between the set of <em>σ</em>-additive regular Borel measures and the set of positive linear functionals.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109131"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016686412400316X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a functor of functionals that preserve the maximum of comonotone functions and the addition of constants. This functor is a subfunctor of the functor of order-preserving functionals and includes the idempotent measure functor as a subfunctor. The main aim of this paper is to demonstrate that this functor is isomorphic to the capacity functor. We establish this isomorphism using the fuzzy max-plus integral. In essence, this result can be viewed as an idempotent analogue of the Riesz Theorem, which establishes a correspondence between the set of σ-additive regular Borel measures and the set of positive linear functionals.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.