{"title":"Cutting-edge biomass gasification technologies for renewable energy generation and achieving net zero emissions","authors":"","doi":"10.1016/j.enconman.2024.119213","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass gasification is a significant technology for the production of bioenergy. A deeper understanding of biomass gasification is crucial, especially regarding its role in bioenergy carbon capture and storage and its contribution to achieving net-zero emissions. This novel review encompasses gasification processes, novel design technologies, advanced syngas cleaning strategies, scalability challenges, techno-economic analysis, societal and environmental aspects of biomass gasification for achieving net-zero emissions. Biomass gasification typically occurs within temperatures (500 to 1000 °C), pressures (0.98 to 2.94 atm), S/B (0.3–1), residence time (few minutes), moisture content (below 35%) and with or without the presence of a catalyst. It is found that optimizing the gasification key parameters significantly reduces impurities content. Gasifier design affects tar content significantly: updraft gasifiers produce the most tar (about 100 g/Nm<sup>3</sup>), downdraft gasifiers the least (around 1 g/Nm<sup>3</sup>) and fluidized-bed gasifiers have intermediate levels (around 10 g/Nm<sup>3</sup>). Physical-mechanical methods achieve 99% efficiency but reduce energy conversion and generate hazardous waste. Thermal and catalytic cracking methods offer up to 98–100% efficiency, with nickel-based catalysts being highly effective. Biomass gasification has attained a Technology Readiness Level (TRL) of 8–9, demonstrating its feasibility for large-scale implementation. However, it incurs a 15% cost increase and requires additional advancements to address technical and economic challenges. Furthermore, converting syngas into valuable products is vital for achieving negative GHG emissions. Continued research is essential to enhance the overall efficacy of the gasification process. Developing innovative approaches that efficiently valorize all gasification by-products is crucial for enabling widespread adoption in the global market.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424011543","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Biomass gasification is a significant technology for the production of bioenergy. A deeper understanding of biomass gasification is crucial, especially regarding its role in bioenergy carbon capture and storage and its contribution to achieving net-zero emissions. This novel review encompasses gasification processes, novel design technologies, advanced syngas cleaning strategies, scalability challenges, techno-economic analysis, societal and environmental aspects of biomass gasification for achieving net-zero emissions. Biomass gasification typically occurs within temperatures (500 to 1000 °C), pressures (0.98 to 2.94 atm), S/B (0.3–1), residence time (few minutes), moisture content (below 35%) and with or without the presence of a catalyst. It is found that optimizing the gasification key parameters significantly reduces impurities content. Gasifier design affects tar content significantly: updraft gasifiers produce the most tar (about 100 g/Nm3), downdraft gasifiers the least (around 1 g/Nm3) and fluidized-bed gasifiers have intermediate levels (around 10 g/Nm3). Physical-mechanical methods achieve 99% efficiency but reduce energy conversion and generate hazardous waste. Thermal and catalytic cracking methods offer up to 98–100% efficiency, with nickel-based catalysts being highly effective. Biomass gasification has attained a Technology Readiness Level (TRL) of 8–9, demonstrating its feasibility for large-scale implementation. However, it incurs a 15% cost increase and requires additional advancements to address technical and economic challenges. Furthermore, converting syngas into valuable products is vital for achieving negative GHG emissions. Continued research is essential to enhance the overall efficacy of the gasification process. Developing innovative approaches that efficiently valorize all gasification by-products is crucial for enabling widespread adoption in the global market.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.