Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu
{"title":"Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications","authors":"Hao Lv ,&nbsp;Zhi Li ,&nbsp;Peng Yin ,&nbsp;Ping Wan ,&nbsp;Mingshan Zhu","doi":"10.1016/j.cclet.2024.110457","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production has been considered as a promising strategy for H<sub>2</sub>O<sub>2</sub> synthesis due to its environmentally friendly. Among various photocatalysts, carbon nitride-based materials are excellent candidates for H<sub>2</sub>O<sub>2</sub> production because of their excellent visible-light response, low cost and high stability. In this review, we summarize in detail the research progress on the photocatalytic production of H<sub>2</sub>O<sub>2</sub> by carbon nitride. First, we summarize the basic principles of photocatalysis and photocatalytic H<sub>2</sub>O<sub>2</sub> production. Second, the classification and modification methods of carbon-nitride-based materials are discussed, including morphology modulation, noble metal loading, defect control, heterojunction regulation, molecular structure engineering and elemental doping. Finally, the different <em>in-situ</em> applications of H<sub>2</sub>O<sub>2</sub> <em>via</em> photosynthesis were discussed, including disinfection and antibiotic resistant genes degradation, organic pollutants degradation, medical applications and fine chemical synthesis. This review brings great promise for <em>in-situ</em> H<sub>2</sub>O<sub>2</sub> photosynthesis, which is expected to serve as a key component in future applications.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 1","pages":"Article 110457"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724009768","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic hydrogen peroxide (H2O2) production has been considered as a promising strategy for H2O2 synthesis due to its environmentally friendly. Among various photocatalysts, carbon nitride-based materials are excellent candidates for H2O2 production because of their excellent visible-light response, low cost and high stability. In this review, we summarize in detail the research progress on the photocatalytic production of H2O2 by carbon nitride. First, we summarize the basic principles of photocatalysis and photocatalytic H2O2 production. Second, the classification and modification methods of carbon-nitride-based materials are discussed, including morphology modulation, noble metal loading, defect control, heterojunction regulation, molecular structure engineering and elemental doping. Finally, the different in-situ applications of H2O2 via photosynthesis were discussed, including disinfection and antibiotic resistant genes degradation, organic pollutants degradation, medical applications and fine chemical synthesis. This review brings great promise for in-situ H2O2 photosynthesis, which is expected to serve as a key component in future applications.

Abstract Image

用于 H2O2 光合作用的非金属氮化碳的最新进展:机理、改性和原位应用
光催化过氧化氢(H2O2)生产因其对环境友好而被认为是一种有前途的 H2O2 合成策略。在各种光催化剂中,氮化碳基材料因其卓越的可见光响应、低成本和高稳定性而成为生产 H2O2 的最佳候选材料。在本综述中,我们将详细总结氮化碳光催化生产 H2O2 的研究进展。首先,我们总结了光催化和光催化产生 H2O2 的基本原理。其次,讨论了氮化碳基材料的分类和改性方法,包括形貌调控、贵金属负载、缺陷控制、异质结调控、分子结构工程和元素掺杂。最后,讨论了 H2O2 通过光合作用的不同原位应用,包括消毒和抗生素耐药基因降解、有机污染物降解、医疗应用和精细化学品合成。本综述为原位 H2O2 光合作用带来了巨大前景,有望成为未来应用的关键组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信