{"title":"Threshold value for a quasilinear Keller–Segel chemotaxis system with the intermediate exponent in a bounded domain","authors":"Hua Zhong","doi":"10.1016/j.nonrwa.2024.104253","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a quasilinear chemotaxis model <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>S</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span> with nonlinear diffusion function <span><math><mrow><mi>D</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and chemotactic sensitivity <span><math><mrow><mi>S</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> <span><math><mrow><mo>(</mo><mi>d</mi><mo>≥</mo><mn>3</mn><mo>)</mo></mrow></math></span>. Here the rate <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>/</mo><mi>S</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></math></span> grows like <span><math><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn><mo>−</mo><mi>m</mi></mrow></msup></math></span> with <span><math><mrow><mn>2</mn><mi>d</mi><mo>/</mo><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo><</mo><mi>m</mi><mo><</mo><mn>2</mn><mo>−</mo><mn>2</mn><mo>/</mo><mi>d</mi></mrow></math></span> as <span><math><mrow><mi>s</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, and <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn></mrow></math></span>.</div><div>It is first shown that there exists a <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> such that if free energy with initial data is suitably small and <span><math><mrow><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msubsup><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>β</mi></mrow></msubsup><mo><</mo><msub><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msub></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mo>−</mo><mi>m</mi><mo>)</mo></mrow><mo>−</mo><mi>d</mi><mo>/</mo><mi>m</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>=</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mo>−</mo><mi>m</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span>, then the classical solutions to the above system are uniformly-in-time bounded. Second, in radially symmetric settings we can find <span><math><mrow><msup><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>></mo><mn>0</mn></mrow></math></span> such that <span><math><mrow><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msubsup><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>β</mi></mrow></msubsup><mo>></mo><msup><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> and the corresponding solution must be unbounded. These results show that the global behavior of classical solutions is classified by the combination of norms of initial data when <span><math><mrow><mn>2</mn><mi>d</mi><mo>/</mo><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo><</mo><mi>m</mi><mo><</mo><mn>2</mn><mo>−</mo><mn>2</mn><mo>/</mo><mi>d</mi></mrow></math></span>.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001925","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a quasilinear chemotaxis model with nonlinear diffusion function and chemotactic sensitivity in a bounded domain . Here the rate grows like with as , and .
It is first shown that there exists a such that if free energy with initial data is suitably small and with and , then the classical solutions to the above system are uniformly-in-time bounded. Second, in radially symmetric settings we can find such that and the corresponding solution must be unbounded. These results show that the global behavior of classical solutions is classified by the combination of norms of initial data when .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.