Feasible region identification approach for the regional integrated energy system considering flexible ramping constraints based on polyhedral projection algorithm
IF 5 2区 工程技术Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Feasible region identification approach for the regional integrated energy system considering flexible ramping constraints based on polyhedral projection algorithm","authors":"Zhan Xiong , Chunyan Zhang , Dawei Qiu , Lingling Wang , Chuanwen Jiang , Shichao Zhou","doi":"10.1016/j.ijepes.2024.110347","DOIUrl":null,"url":null,"abstract":"<div><div>The low-carbon agenda promotes the increasing penetration of renewable energy, this however also results in a rapid decrease in the flexibility of power systems with less controllable generation. There is an urgent requirement to explore user-side resources to provide flexibility for the power system. The regional integrated energy system (RIES) contains a large number of multi-energy coupling devices with abundant flexibility. However, considering the multi-energy complementary characteristics and complex multi-energy networks, as well as the uncertainty of the renewable energy, it is difficult to quantify the energy purchasing demand and flexibility support ability of RIES in the market, making it challenging to identify the RIES feasible region. This paper proposes a novel approach to tackle this challenge by introducing a projection method based on second-order cone programming. The approach aims to describe the energy purchasing and flexible reserve feasible regions of an RIES. Specifically, a max–min RIES operating model is constructed with the goal of minimizing the distance from the boundary of the feasible region in the worst case. Subsequently, the strong duality principle and Karush-Kuhn-Tucker (KKT) optimality conditions are leveraged to reformulate the max–min optimization problem into a solvable second-order cone programming problem. Additionally, the chance constraint is introduced to address and express the risk associated the uncertainty of the renewable energy output in RIES. Moreover, for the convenience of subsequent solving, the deterministic equivalent method is used to convert it into a deterministic constraint. Case studies conducted on an RIES incorporating a 33-bus distribution network and a 7-node natural gas network demonstrate the effectiveness and efficiency of the proposed approach in projecting the feasible region in terms of both operating costs and computational time.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"163 ","pages":"Article 110347"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524005702","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The low-carbon agenda promotes the increasing penetration of renewable energy, this however also results in a rapid decrease in the flexibility of power systems with less controllable generation. There is an urgent requirement to explore user-side resources to provide flexibility for the power system. The regional integrated energy system (RIES) contains a large number of multi-energy coupling devices with abundant flexibility. However, considering the multi-energy complementary characteristics and complex multi-energy networks, as well as the uncertainty of the renewable energy, it is difficult to quantify the energy purchasing demand and flexibility support ability of RIES in the market, making it challenging to identify the RIES feasible region. This paper proposes a novel approach to tackle this challenge by introducing a projection method based on second-order cone programming. The approach aims to describe the energy purchasing and flexible reserve feasible regions of an RIES. Specifically, a max–min RIES operating model is constructed with the goal of minimizing the distance from the boundary of the feasible region in the worst case. Subsequently, the strong duality principle and Karush-Kuhn-Tucker (KKT) optimality conditions are leveraged to reformulate the max–min optimization problem into a solvable second-order cone programming problem. Additionally, the chance constraint is introduced to address and express the risk associated the uncertainty of the renewable energy output in RIES. Moreover, for the convenience of subsequent solving, the deterministic equivalent method is used to convert it into a deterministic constraint. Case studies conducted on an RIES incorporating a 33-bus distribution network and a 7-node natural gas network demonstrate the effectiveness and efficiency of the proposed approach in projecting the feasible region in terms of both operating costs and computational time.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.