An implementation of hp-FEM for the fractional Laplacian

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Björn Bahr, Markus Faustmann, Jens Markus Melenk
{"title":"An implementation of hp-FEM for the fractional Laplacian","authors":"Björn Bahr,&nbsp;Markus Faustmann,&nbsp;Jens Markus Melenk","doi":"10.1016/j.camwa.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the discretization of the 1<em>d</em>-integral Dirichlet fractional Laplacian by <em>hp</em>-finite elements. We present quadrature schemes to set up the stiffness matrix and load vector that preserve the exponential convergence of <em>hp</em>-FEM on geometric meshes. The schemes are based on Gauss-Jacobi and Gauss-Legendre rules. We show that taking a number of quadrature points slightly exceeding the polynomial degree is enough to preserve root exponential convergence. The total number of algebraic operations to set up the system is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>, where <em>N</em> is the problem size. Numerical examples illustrate the analysis. We also extend our analysis to the fractional Laplacian in higher dimensions for <em>hp</em>-finite element spaces based on shape regular meshes.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004486","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the discretization of the 1d-integral Dirichlet fractional Laplacian by hp-finite elements. We present quadrature schemes to set up the stiffness matrix and load vector that preserve the exponential convergence of hp-FEM on geometric meshes. The schemes are based on Gauss-Jacobi and Gauss-Legendre rules. We show that taking a number of quadrature points slightly exceeding the polynomial degree is enough to preserve root exponential convergence. The total number of algebraic operations to set up the system is O(N5/2), where N is the problem size. Numerical examples illustrate the analysis. We also extend our analysis to the fractional Laplacian in higher dimensions for hp-finite element spaces based on shape regular meshes.
分数拉普拉斯函数的 hp-FEM 实现
我们考虑用 hp 有限元对 1d-integral Dirichlet 分数拉普拉奇进行离散化。我们提出了正交方案来设置刚度矩阵和载荷向量,以保持 hp-FEM 在几何网格上的指数收敛性。这些方案基于高斯-雅可比规则和高斯-列根德规则。我们证明,取略微超过多项式阶数的正交点就足以保持根指数收敛性。建立系统的代数运算总数为 O(N5/2),其中 N 为问题大小。数值示例说明了这一分析。我们还将分析扩展到基于形状规则网格的高维 hp 有限元空间的分数拉普拉斯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信