An additively manufactured heat-resistant Al-12Si alloy via introducing stable eutectic engineering

IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
{"title":"An additively manufactured heat-resistant Al-12Si alloy via introducing stable eutectic engineering","authors":"","doi":"10.1016/j.addma.2024.104523","DOIUrl":null,"url":null,"abstract":"<div><div>The poor microstructural stability of crack-free Al alloys synthesized via additive manufacturing typically possesses poor heat resistance. In this work, a novel heat-resistant Al-12Si-1.5Ni-2.0Fe (wt%) alloy was fabricated by additive manufacturing, in which tensile strength reaches 271 MPa and 98.1 MPa at 300 ºC and 400 ºC, respectively. Calculation and electron microscopy characterizations show that Fe/Ni segregation with high partition coefficients and low diffusion rates delivers a high thermally stability, thus providing a robust pinning force to inhibit the broken-up of Si eutectics and a solid barrier for dislocation motion at elevated temperatures. In addition to providing weight reduction by substituting Steel, Ti, and Ni-based alloys at 200–450 °C, the adoption of low-cost and stable eutectic engineering reduces the economic barriers to additive manufacturing applications.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424005694","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The poor microstructural stability of crack-free Al alloys synthesized via additive manufacturing typically possesses poor heat resistance. In this work, a novel heat-resistant Al-12Si-1.5Ni-2.0Fe (wt%) alloy was fabricated by additive manufacturing, in which tensile strength reaches 271 MPa and 98.1 MPa at 300 ºC and 400 ºC, respectively. Calculation and electron microscopy characterizations show that Fe/Ni segregation with high partition coefficients and low diffusion rates delivers a high thermally stability, thus providing a robust pinning force to inhibit the broken-up of Si eutectics and a solid barrier for dislocation motion at elevated temperatures. In addition to providing weight reduction by substituting Steel, Ti, and Ni-based alloys at 200–450 °C, the adoption of low-cost and stable eutectic engineering reduces the economic barriers to additive manufacturing applications.
通过引入稳定共晶工程实现添加式制造的耐热 Al-12Si 合金
通过快速成型技术合成的无裂纹铝合金微观结构稳定性较差,通常具有较差的耐热性。本研究通过增材制造技术制备了一种新型耐热 Al-12Si-1.5Ni-2.0Fe (wt%) 合金,其在 300 ºC 和 400 ºC 时的抗拉强度分别达到 271 MPa 和 98.1 MPa。计算和电子显微镜表征结果表明,具有高分配系数和低扩散率的铁/镍偏析具有很高的热稳定性,从而提供了强大的钉扎力,抑制硅共晶的破裂,并在高温下为位错运动提供了坚实的屏障。除了在 200-450 °C温度下替代钢、钛和镍基合金减轻重量外,采用低成本和稳定的共晶工程还降低了增材制造应用的经济障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信