Anna Michalska-Foryszewska, Maciej Bujko, Agnieszka Kwiatkowska-Miernik, Katarzyna Ziemba, Katarzyna Sklinda, Jerzy Walecki, Bartosz Mruk
{"title":"The peritumoral brain zone in glioblastoma: a review of the pretreatment approach.","authors":"Anna Michalska-Foryszewska, Maciej Bujko, Agnieszka Kwiatkowska-Miernik, Katarzyna Ziemba, Katarzyna Sklinda, Jerzy Walecki, Bartosz Mruk","doi":"10.5114/pjr/192044","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastomas are the most common and aggressive form of malignant primary brain tumors in adults. The standard treatment is surgical resection followed by radiotherapy and chemotherapy. Despite optimal treatment methods, the prognosis for patients remains poor. Preoperative determination of glioblastoma margins remains beneficial for the complete removal of the tumor mass. Radiotherapy is essential for post-surgery treatment, but radioresistance is a significant challenge contributing to high mortality rates. Advanced imaging technologies are used to analyze the changes in the peritumoral brain zone (PTZ). Consequently, they may lead to the development of novel therapeutic options, especially targeting the marginal parts of a tumor, which could improve the prognosis of glioblastoma patients. The clinical presentation of glioblastoma is heterogeneous and mostly depends on the location and size of a tumor. Glioblastomas are characterized by both intratumoral cellular heterogeneity and an extensive, diffuse infiltration into the normal tissue bordering a tumor called the PTZ. Neuroimaging techniques, such as diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), proton magnetic resonance spectroscopy (<sup>1</sup>H MRS), and chemical exchange saturation transfer (CEST) are useful methods in the evaluation of the tumor infiltration and thus the resection margin.</p>","PeriodicalId":94174,"journal":{"name":"Polish journal of radiology","volume":"89 ","pages":"e480-e487"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538905/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish journal of radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/pjr/192044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastomas are the most common and aggressive form of malignant primary brain tumors in adults. The standard treatment is surgical resection followed by radiotherapy and chemotherapy. Despite optimal treatment methods, the prognosis for patients remains poor. Preoperative determination of glioblastoma margins remains beneficial for the complete removal of the tumor mass. Radiotherapy is essential for post-surgery treatment, but radioresistance is a significant challenge contributing to high mortality rates. Advanced imaging technologies are used to analyze the changes in the peritumoral brain zone (PTZ). Consequently, they may lead to the development of novel therapeutic options, especially targeting the marginal parts of a tumor, which could improve the prognosis of glioblastoma patients. The clinical presentation of glioblastoma is heterogeneous and mostly depends on the location and size of a tumor. Glioblastomas are characterized by both intratumoral cellular heterogeneity and an extensive, diffuse infiltration into the normal tissue bordering a tumor called the PTZ. Neuroimaging techniques, such as diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), proton magnetic resonance spectroscopy (1H MRS), and chemical exchange saturation transfer (CEST) are useful methods in the evaluation of the tumor infiltration and thus the resection margin.