Claudin2 is involved in the interaction between Megalocytivirus-induced virus-mock basement membrane (VMBM) and lymphatic endothelial cells.

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES
Jian-Hui He, Deyu Han, Xianyu Meng, Lingling Li, Bangping Hu, Muting Yan, Zi-Ang Wang, Shaoping Weng, Jianguo He, Xiaopeng Xu
{"title":"Claudin2 is involved in the interaction between Megalocytivirus-induced virus-mock basement membrane (VMBM) and lymphatic endothelial cells.","authors":"Jian-Hui He, Deyu Han, Xianyu Meng, Lingling Li, Bangping Hu, Muting Yan, Zi-Ang Wang, Shaoping Weng, Jianguo He, Xiaopeng Xu","doi":"10.1186/s13567-024-01404-9","DOIUrl":null,"url":null,"abstract":"<p><p>The genus Megalocytivirus, belonging to the family Iridoviridae, is one of the most detrimental virus groups to fish aquaculture. Megalocytivirus creates a virus-mock basement membrane (VMBM) on the surface of infected cells. This membrane provides attachment sites for lymphatic endothelial cells (LECs), disrupting fish's endothelial cell-extracellular matrix system. This disruption triggers injury to the vascular system and can result in death. Exploring the VMBM-cell interaction mechanism is crucial for uncovering the pathogenesis of Megalocytivirus and identifying therapeutic targets. Claudins, a class of tetra transmembrane proteins, play a key role in creating tight junctions between endothelial or epithelial cells. In this study, we demonstrated that the expression of Claudin2, a member of the Claudin family in fish, was significantly up-regulated by Megalocytivirus infection. Claudin2 was found in LECs attached to the surface of infected cells. It interacted with the VMBM viral components VP23R, VP08R, and VP33L at multiple binding sites through its two extracellular loops. However, it did not interact with the host basement membrane's nidogen. Therefore, Claudin2 is involved in the interaction of LEC with VMBM and plays a role in the disturbed distribution of extracellular matrix and endothelial cells in Megalocytivirus-infected fish tissues. This study aims to uncover the molecular mechanisms by which Megalocytivirus infection leads to pathological changes in the vascular system.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"55 1","pages":"143"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542248/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-024-01404-9","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The genus Megalocytivirus, belonging to the family Iridoviridae, is one of the most detrimental virus groups to fish aquaculture. Megalocytivirus creates a virus-mock basement membrane (VMBM) on the surface of infected cells. This membrane provides attachment sites for lymphatic endothelial cells (LECs), disrupting fish's endothelial cell-extracellular matrix system. This disruption triggers injury to the vascular system and can result in death. Exploring the VMBM-cell interaction mechanism is crucial for uncovering the pathogenesis of Megalocytivirus and identifying therapeutic targets. Claudins, a class of tetra transmembrane proteins, play a key role in creating tight junctions between endothelial or epithelial cells. In this study, we demonstrated that the expression of Claudin2, a member of the Claudin family in fish, was significantly up-regulated by Megalocytivirus infection. Claudin2 was found in LECs attached to the surface of infected cells. It interacted with the VMBM viral components VP23R, VP08R, and VP33L at multiple binding sites through its two extracellular loops. However, it did not interact with the host basement membrane's nidogen. Therefore, Claudin2 is involved in the interaction of LEC with VMBM and plays a role in the disturbed distribution of extracellular matrix and endothelial cells in Megalocytivirus-infected fish tissues. This study aims to uncover the molecular mechanisms by which Megalocytivirus infection leads to pathological changes in the vascular system.

Claudin2参与了巨细胞病毒诱导的病毒模拟基底膜(VMBM)与淋巴内皮细胞之间的相互作用。
巨细胞病毒属属于虹彩病毒科,是对鱼类养殖危害最大的病毒群之一。巨细胞病毒会在感染细胞表面形成病毒模拟基底膜(VMBM)。这层膜为淋巴内皮细胞(LEC)提供了附着点,破坏了鱼类的内皮细胞-细胞外基质系统。这种破坏会引发对血管系统的伤害并导致死亡。探索VMBM-细胞相互作用机制对于揭示巨细胞病毒的发病机制和确定治疗靶点至关重要。Claudins是一类四跨膜蛋白,在内皮细胞或上皮细胞之间形成紧密连接方面发挥着关键作用。在这项研究中,我们证实了鱼类中 Claudin 家族成员 Claudin2 的表达在巨细胞病毒感染后显著上调。在附着于感染细胞表面的 LECs 中发现了 Claudin2。它通过其两个胞外环在多个结合位点与VMBM病毒成分VP23R、VP08R和VP33L相互作用。但是,它与宿主基底膜上的nidogen没有相互作用。因此,Claudin2参与了LEC与VMBM的相互作用,并在巨细胞病毒感染鱼类组织中细胞外基质和内皮细胞的分布紊乱中发挥作用。本研究旨在揭示巨细胞病毒感染导致血管系统病理变化的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信