Small chemical molecules regulating the phytohormone signalling alter the plant's physiological processes to improve stress adaptation, growth and productivity.
{"title":"Small chemical molecules regulating the phytohormone signalling alter the plant's physiological processes to improve stress adaptation, growth and productivity.","authors":"Shobhna Yadav, Vijayaraghavareddy Preethi, Sujitha Dadi, Chandra Shekhar Seth, Keshavareddy G, Babitha Kodaikallu Chandrashekar, Ramu Shettykothanur Vemanna","doi":"10.1007/s12298-024-01514-w","DOIUrl":null,"url":null,"abstract":"<p><p>Small chemical molecules are attractive agents for improving the plant processes associated with plant growth and stress tolerance. Recent advances in chemical biology and structure-assisted drug discovery approaches have opened up new avenues in plant biology to discover new drug-like molecules to improve plant processes for sustained food production. Several compounds targeting phytohormone biosynthesis or signalling cascades were designed to alter plant physiological mechanisms. Altering Abscisic acid synthesis and its signalling process can improve drought tolerance, and the processes targeted are reversible. Molecules targeting cytokinin, Auxin, and gibberellic acid regulate plant physiological processes and can potentially improve plant growth, biomass and productivity. The potential of molecules may be exploited as agrochemicals to enhance agricultural productivity. The discovery of small molecules provides new avenues to improve crop production in changing climatic conditions and the nutritional quality of foods. We present the rational combinations of small molecules with inhibitory and co-stimulatory effects and discuss future opportunities in this field.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535105/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01514-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Small chemical molecules are attractive agents for improving the plant processes associated with plant growth and stress tolerance. Recent advances in chemical biology and structure-assisted drug discovery approaches have opened up new avenues in plant biology to discover new drug-like molecules to improve plant processes for sustained food production. Several compounds targeting phytohormone biosynthesis or signalling cascades were designed to alter plant physiological mechanisms. Altering Abscisic acid synthesis and its signalling process can improve drought tolerance, and the processes targeted are reversible. Molecules targeting cytokinin, Auxin, and gibberellic acid regulate plant physiological processes and can potentially improve plant growth, biomass and productivity. The potential of molecules may be exploited as agrochemicals to enhance agricultural productivity. The discovery of small molecules provides new avenues to improve crop production in changing climatic conditions and the nutritional quality of foods. We present the rational combinations of small molecules with inhibitory and co-stimulatory effects and discuss future opportunities in this field.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.