Impact of heat stress on physiological characteristics and expression of heat shock proteins (HSPs) in groundnut (Arachis hypogaea L.).

IF 3.4 3区 生物学 Q1 PLANT SCIENCES
B Aravind, R J Shreeraksha, R Poornima, Divyabharathi Ravichandran, P U Krishnaraj, V P Chimmad, Kiran K Mirajkar, Basavaraj Bagewadi, Pasupuleti Janila, Manish K Pandey, Rajeev K Varshney, Spurthi N Nayak
{"title":"Impact of heat stress on physiological characteristics and expression of heat shock proteins (HSPs) in groundnut (<i>Arachis hypogaea</i> L.).","authors":"B Aravind, R J Shreeraksha, R Poornima, Divyabharathi Ravichandran, P U Krishnaraj, V P Chimmad, Kiran K Mirajkar, Basavaraj Bagewadi, Pasupuleti Janila, Manish K Pandey, Rajeev K Varshney, Spurthi N Nayak","doi":"10.1007/s12298-024-01520-y","DOIUrl":null,"url":null,"abstract":"<p><p>The current climate change has a profound impact on agricultural production. Despite the unanimous efforts of several nations to prevent further increase in global temperatures, developing adaptive strategies by imparting heat tolerance in crop plants is essential to ensure global food security. This study demonstrates the impact of heat stress on the morphological, physiological and biochemical properties of different groundnut genotypes derived from a recombinant inbred line (RIL) population (JL 24 × 55-437). The plants were grown in controlled conditions and a high-temperature stress of 45 °C was gradually imposed by placing the plants in an environmental chamber during peak reproductive stage [25 days after sowing (DAS) to 60 DAS]. Heat tolerant genotypes had better biochemical machinery to withstand the heat stress-induced oxidative burst with higher activity of catalase and peroxidase. Also, the tolerant genotypes had lesser membrane damage as indicated by lower malondialdehyde levels. Greater expression of heat shock proteins (<i>HSP17</i>) transcripts alongside elevated levels of both enzymatic and non-enzymatic antioxidant activity was observed when exposed to high temperature, indicating their potential association with heat stress tolerance in groundnut.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-024-01520-y.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"30 10","pages":"1691-1706"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535108/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01520-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The current climate change has a profound impact on agricultural production. Despite the unanimous efforts of several nations to prevent further increase in global temperatures, developing adaptive strategies by imparting heat tolerance in crop plants is essential to ensure global food security. This study demonstrates the impact of heat stress on the morphological, physiological and biochemical properties of different groundnut genotypes derived from a recombinant inbred line (RIL) population (JL 24 × 55-437). The plants were grown in controlled conditions and a high-temperature stress of 45 °C was gradually imposed by placing the plants in an environmental chamber during peak reproductive stage [25 days after sowing (DAS) to 60 DAS]. Heat tolerant genotypes had better biochemical machinery to withstand the heat stress-induced oxidative burst with higher activity of catalase and peroxidase. Also, the tolerant genotypes had lesser membrane damage as indicated by lower malondialdehyde levels. Greater expression of heat shock proteins (HSP17) transcripts alongside elevated levels of both enzymatic and non-enzymatic antioxidant activity was observed when exposed to high temperature, indicating their potential association with heat stress tolerance in groundnut.

Supplementary information: The online version contains supplementary material available at 10.1007/s12298-024-01520-y.

热胁迫对落花生(Arachis hypogaea L.)生理特征和热休克蛋白(HSPs)表达的影响。
当前的气候变化对农业生产影响深远。尽管多个国家一致努力防止全球气温进一步升高,但通过赋予作物植物耐热性来制定适应战略对于确保全球粮食安全至关重要。本研究展示了热胁迫对源自重组近交系(RIL)群体(JL 24 × 55-437)的不同花生基因型的形态、生理和生化特性的影响。植物在受控条件下生长,在生殖高峰期(播种后 25 天(DAS)至 60 天(DAS)),将植物置于环境室中,逐渐施加 45 °C 的高温胁迫。耐热基因型具有更好的生化机制来抵御热胁迫诱导的氧化猝灭,过氧化氢酶和过氧化物酶的活性更高。此外,耐热基因型的丙二醛含量较低,表明膜损伤较轻。暴露于高温时,热休克蛋白(HSP17)转录本的表达量增加,同时酶和非酶抗氧化活性水平升高,这表明它们与花生的热胁迫耐受性可能有关:在线版本包含补充材料,可查阅 10.1007/s12298-024-01520-y。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信