Jared Wollman, Kevin Wanniarachchi, Bijaya Pradhan, Lu Huang, Jason G Kerkvliet, Adam D Hoppe, Natalie W Thiex
{"title":"Mannose receptor (MRC1) mediates uptake of dextran by bone marrow-derived macrophages.","authors":"Jared Wollman, Kevin Wanniarachchi, Bijaya Pradhan, Lu Huang, Jason G Kerkvliet, Adam D Hoppe, Natalie W Thiex","doi":"10.1091/mbc.E24-08-0355","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages survey their environment using receptor-mediated endocytosis and pinocytosis. Receptor-mediated endocytosis allows internalization of specific ligands, whereas pinocytosis nonselectively internalizes extracellular fluids and solutes. CRISPR/Cas9 whole-genome screens were used to identify genes regulating constitutive and growth factor-stimulated dextran uptake in murine bone marrow-derived macrophages (BMDM). The mannose receptor c-type 1 (MRC1/CD206) was a top hit in the screen. Targeted gene disruptions of <i>Mrc1</i> reduced dextran uptake but had little effect on fluid-phase uptake of Lucifer yellow. Other screen hits also differentially affected the uptake of dextran and Lucifer yellow, indicating internalization by separate mechanisms. Visualization of dextran and Lucifer yellow uptake by microscopy showed enrichment of dextran in small puncta, which was inhibitable by mannan, a ligand of MRC1. In contrast, Lucifer yellow predominantly was internalized in larger macropinosomes<i>.</i> In addition, IL4-treated BMDMs internalized more dextran than untreated BMDM correlating with increased MRC1 expression. Therefore, dextran is not an effective marker for pinocytosis in BMDMs since it is internalized by receptor-mediated process. Numerous genes that regulate dextran internalization in primary murine macrophages were identified in the whole-genome screens, which can inform understanding of the regulation of MRC1 expression and MRC1-mediated uptake in macrophages.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar153"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-08-0355","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Macrophages survey their environment using receptor-mediated endocytosis and pinocytosis. Receptor-mediated endocytosis allows internalization of specific ligands, whereas pinocytosis nonselectively internalizes extracellular fluids and solutes. CRISPR/Cas9 whole-genome screens were used to identify genes regulating constitutive and growth factor-stimulated dextran uptake in murine bone marrow-derived macrophages (BMDM). The mannose receptor c-type 1 (MRC1/CD206) was a top hit in the screen. Targeted gene disruptions of Mrc1 reduced dextran uptake but had little effect on fluid-phase uptake of Lucifer yellow. Other screen hits also differentially affected the uptake of dextran and Lucifer yellow, indicating internalization by separate mechanisms. Visualization of dextran and Lucifer yellow uptake by microscopy showed enrichment of dextran in small puncta, which was inhibitable by mannan, a ligand of MRC1. In contrast, Lucifer yellow predominantly was internalized in larger macropinosomes. In addition, IL4-treated BMDMs internalized more dextran than untreated BMDM correlating with increased MRC1 expression. Therefore, dextran is not an effective marker for pinocytosis in BMDMs since it is internalized by receptor-mediated process. Numerous genes that regulate dextran internalization in primary murine macrophages were identified in the whole-genome screens, which can inform understanding of the regulation of MRC1 expression and MRC1-mediated uptake in macrophages.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.