{"title":"Neuroimaging and perceptual-cognitive expertise in sport: A narrative review of research and future directions","authors":"B.S. DeCouto , M. Bilalić , A.M. Williams","doi":"10.1016/j.neuropsychologia.2024.109032","DOIUrl":null,"url":null,"abstract":"<div><div>Perceptual-cognitive expertise is crucial in domains that require rapid extraction of information for anticipation (e.g., sport, aviation, warfighting). Yet, published reports on the neuroscience of perceptual-cognitive expertise in such dynamic performance environments focus almost exclusively on biological motion processing (i.e., action observation network), leaving gaps in knowledge about the neural mechanisms underlying other frequently cited perceptual-cognitive skills, such as pattern recognition, the use of contextual priors, and global processing. In this paper, we provide a narrative review of research on the neural mechanisms underlying perceptual-cognitive expertise in sport, a domain where individuals possess highly specialized perceptual-cognitive skills (i.e., expertise) that enable successful performance in dynamic environments. Additionally, we discuss how work from domains with more static, predictable stimuli for perception and decision-making (e.g., radiology, chess) can enhance understanding of the neuroscience of expertise in sport. In future, efforts are needed to address the neural mechanisms underpinning less studied perceptual-cognitive skills (i.e., pattern recognition, contextual priors, global processing) and to explore how experts prioritize these skills within different contexts, thereby enhancing our understanding of perceptual-cognitive expertise across numerous professional domains.</div></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":"205 ","pages":"Article 109032"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychologia","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028393224002471","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Perceptual-cognitive expertise is crucial in domains that require rapid extraction of information for anticipation (e.g., sport, aviation, warfighting). Yet, published reports on the neuroscience of perceptual-cognitive expertise in such dynamic performance environments focus almost exclusively on biological motion processing (i.e., action observation network), leaving gaps in knowledge about the neural mechanisms underlying other frequently cited perceptual-cognitive skills, such as pattern recognition, the use of contextual priors, and global processing. In this paper, we provide a narrative review of research on the neural mechanisms underlying perceptual-cognitive expertise in sport, a domain where individuals possess highly specialized perceptual-cognitive skills (i.e., expertise) that enable successful performance in dynamic environments. Additionally, we discuss how work from domains with more static, predictable stimuli for perception and decision-making (e.g., radiology, chess) can enhance understanding of the neuroscience of expertise in sport. In future, efforts are needed to address the neural mechanisms underpinning less studied perceptual-cognitive skills (i.e., pattern recognition, contextual priors, global processing) and to explore how experts prioritize these skills within different contexts, thereby enhancing our understanding of perceptual-cognitive expertise across numerous professional domains.
期刊介绍:
Neuropsychologia is an international interdisciplinary journal devoted to experimental and theoretical contributions that advance understanding of human cognition and behavior from a neuroscience perspective. The journal will consider for publication studies that link brain function with cognitive processes, including attention and awareness, action and motor control, executive functions and cognitive control, memory, language, and emotion and social cognition.