{"title":"Neuroimaging and perceptual-cognitive expertise in sport: A narrative review of research and future directions.","authors":"B S DeCouto, M Bilalić, A M Williams","doi":"10.1016/j.neuropsychologia.2024.109032","DOIUrl":null,"url":null,"abstract":"<p><p>Perceptual-cognitive expertise is crucial in domains that require rapid extraction of information for anticipation (e.g., sport, aviation, warfighting). Yet, published reports on the neuroscience of perceptual-cognitive expertise in such dynamic performance environments focus almost exclusively on biological motion processing (i.e., action observation network), leaving gaps in knowledge about the neural mechanisms underlying other frequently cited perceptual-cognitive skills, such as pattern recognition, the use of contextual priors, and global processing. In this paper, we provide a narrative review of research on the neural mechanisms underlying perceptual-cognitive expertise in sport, a domain where individuals possess highly specialized perceptual-cognitive skills (i.e., expertise) that enable successful performance in dynamic environments. Additionally, we discuss how work from domains with more static, predictable stimuli for perception and decision-making (e.g., radiology, chess) can enhance understanding of the neuroscience of expertise in sport. In future, efforts are needed to address the neural mechanisms underpinning less studied perceptual-cognitive skills (i.e., pattern recognition, contextual priors, global processing) and to explore how experts prioritize these skills within different contexts, thereby enhancing our understanding of perceptual-cognitive expertise across numerous professional domains.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.neuropsychologia.2024.109032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Perceptual-cognitive expertise is crucial in domains that require rapid extraction of information for anticipation (e.g., sport, aviation, warfighting). Yet, published reports on the neuroscience of perceptual-cognitive expertise in such dynamic performance environments focus almost exclusively on biological motion processing (i.e., action observation network), leaving gaps in knowledge about the neural mechanisms underlying other frequently cited perceptual-cognitive skills, such as pattern recognition, the use of contextual priors, and global processing. In this paper, we provide a narrative review of research on the neural mechanisms underlying perceptual-cognitive expertise in sport, a domain where individuals possess highly specialized perceptual-cognitive skills (i.e., expertise) that enable successful performance in dynamic environments. Additionally, we discuss how work from domains with more static, predictable stimuli for perception and decision-making (e.g., radiology, chess) can enhance understanding of the neuroscience of expertise in sport. In future, efforts are needed to address the neural mechanisms underpinning less studied perceptual-cognitive skills (i.e., pattern recognition, contextual priors, global processing) and to explore how experts prioritize these skills within different contexts, thereby enhancing our understanding of perceptual-cognitive expertise across numerous professional domains.