{"title":"During haptic communication, the central nervous system compensates distinctly for delay and noise.","authors":"Jonathan Eden, Ekaterina Ivanova, Etienne Burdet","doi":"10.1371/journal.pcbi.1012037","DOIUrl":null,"url":null,"abstract":"<p><p>Physically connected humans have been shown to exploit the exchange of haptic forces and tactile information to improve their performance in joint action tasks. As human interactions are increasingly mediated through robots and networks it is important to understand the impact that network features such as lag and noise may have on human behaviour. In this paper, we investigated interaction with a human-like robot controller that provides similar haptic communication behaviour as human-human interaction and examined the influence and compensation mechanisms for delay and noise on haptic communication. The results of our experiments show that participants can perceive a difference between noise and delay, and make use of compensation mechanisms to preserve performance in both cases. However, while noise is compensated for by increasing co-contraction, delay compensation could not be explained by this strategy. Instead, computational modelling suggested that a distinct mechanism is used to compensate for the delay and yield an efficient haptic communication.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012037","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Physically connected humans have been shown to exploit the exchange of haptic forces and tactile information to improve their performance in joint action tasks. As human interactions are increasingly mediated through robots and networks it is important to understand the impact that network features such as lag and noise may have on human behaviour. In this paper, we investigated interaction with a human-like robot controller that provides similar haptic communication behaviour as human-human interaction and examined the influence and compensation mechanisms for delay and noise on haptic communication. The results of our experiments show that participants can perceive a difference between noise and delay, and make use of compensation mechanisms to preserve performance in both cases. However, while noise is compensated for by increasing co-contraction, delay compensation could not be explained by this strategy. Instead, computational modelling suggested that a distinct mechanism is used to compensate for the delay and yield an efficient haptic communication.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.