Ningyun Sun, Jing Zhang, Mingtao Guo, Yibin Mao, Wei Wu, Yi Lu
{"title":"Chemical Distribution Uniformity Assessment of \"Intra-Tablet\" by Hyperspectral Raman Imaging Analysis.","authors":"Ningyun Sun, Jing Zhang, Mingtao Guo, Yibin Mao, Wei Wu, Yi Lu","doi":"10.1007/s11095-024-03778-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to develop a new index, Distribution Uniformity Index (DUI), to assess the \"intra-tablet\" homogeneity.</p><p><strong>Methods: </strong>High-resolution hyperspectral Raman imaging was adopted to scan a tablet to get the components' distribution. The heuristic algorithm was applied to generate a Raman heatmap with RGB colors quantitatively correlated with the concentrations of each component. DUI is defined as the ratio of the area under the uniformity curve of the sample image to that of the randomized image. The accuracy and applicability of DUI were verified by constructing model images with controlled uniformity and random regions. The effects of \"intra-tablet\" homogeneity on the disintegration and dissolution of spironolactone tablets were investigated.</p><p><strong>Results: </strong>DUI value was directly obtained from heuristic visual analysis of macro-pixel from hyperspectral Raman images. A good linear relationship and good repeatability were confirmed between DUI and the uniformity of model images. The size of CaSO<sub>4</sub>·2H<sub>2</sub>O affected the \"intra-tablet\" homogeneity of spironolactone tablets, which was detected by the DUI value. The better \"intra-tablet\" homogeneity led to a higher disintegration and dissolution of spironolactone tablets.</p><p><strong>Conclusions: </strong>DUI represents a novel index to evaluate the \"intra-tablet\" homogeneity and is beneficial for formulation research and development.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-024-03778-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to develop a new index, Distribution Uniformity Index (DUI), to assess the "intra-tablet" homogeneity.
Methods: High-resolution hyperspectral Raman imaging was adopted to scan a tablet to get the components' distribution. The heuristic algorithm was applied to generate a Raman heatmap with RGB colors quantitatively correlated with the concentrations of each component. DUI is defined as the ratio of the area under the uniformity curve of the sample image to that of the randomized image. The accuracy and applicability of DUI were verified by constructing model images with controlled uniformity and random regions. The effects of "intra-tablet" homogeneity on the disintegration and dissolution of spironolactone tablets were investigated.
Results: DUI value was directly obtained from heuristic visual analysis of macro-pixel from hyperspectral Raman images. A good linear relationship and good repeatability were confirmed between DUI and the uniformity of model images. The size of CaSO4·2H2O affected the "intra-tablet" homogeneity of spironolactone tablets, which was detected by the DUI value. The better "intra-tablet" homogeneity led to a higher disintegration and dissolution of spironolactone tablets.
Conclusions: DUI represents a novel index to evaluate the "intra-tablet" homogeneity and is beneficial for formulation research and development.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.