Dermal drug delivery via bilosomes: a synergistic integration for better therapeutic outcomes.

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED
Kartik Aralelimath, Jagannath Sahoo, Sarika Wairkar
{"title":"Dermal drug delivery <i>via</i> bilosomes: a synergistic integration for better therapeutic outcomes.","authors":"Kartik Aralelimath, Jagannath Sahoo, Sarika Wairkar","doi":"10.1080/02652048.2024.2423618","DOIUrl":null,"url":null,"abstract":"<p><p>The dermal route is commonly used to deliver the drugs at the targeted site and achieve maximum therapeutic efficacy. The stratum corneum, the uppermost layer of the skin, presents a significant diffusional barrier for most drugs. Various nanoformulations face challenges such as limited drug absorption and inadequate retention at the targeted site, frequently hindering therapeutic efficacy. Researchers are increasingly exploring innovative strategies that leverage nanotechnology and specialized carriers to address these challenges and enhance the outcomes of dermal medications. A novel drug delivery system, bilosomes, has been designed as a potential vesicular carrier system for the dermal route. Bilosomes are colloidal, lipid-based vesicles stabilized with bile salts, offering greater stability during storage and transportation. The lipid bilayer of bilosomes imparts ultra-flexibility, facilitating penetration through the stratum corneum. This review explores the use of bilosomes in dermal formulations for treating diverse diseases, their developmental techniques, and characterization, and it sheds light on their advantages over traditional lipid nanocarriers.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-14"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2024.2423618","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The dermal route is commonly used to deliver the drugs at the targeted site and achieve maximum therapeutic efficacy. The stratum corneum, the uppermost layer of the skin, presents a significant diffusional barrier for most drugs. Various nanoformulations face challenges such as limited drug absorption and inadequate retention at the targeted site, frequently hindering therapeutic efficacy. Researchers are increasingly exploring innovative strategies that leverage nanotechnology and specialized carriers to address these challenges and enhance the outcomes of dermal medications. A novel drug delivery system, bilosomes, has been designed as a potential vesicular carrier system for the dermal route. Bilosomes are colloidal, lipid-based vesicles stabilized with bile salts, offering greater stability during storage and transportation. The lipid bilayer of bilosomes imparts ultra-flexibility, facilitating penetration through the stratum corneum. This review explores the use of bilosomes in dermal formulations for treating diverse diseases, their developmental techniques, and characterization, and it sheds light on their advantages over traditional lipid nanocarriers.

通过双糖体进行皮肤给药:协同整合,提高疗效。
为了将药物输送到目标部位并取得最大疗效,通常采用皮肤途径。角质层是皮肤的最上层,对大多数药物来说都是一个重要的扩散屏障。各种纳米制剂都面临着药物吸收受限和在目标部位滞留不足等挑战,常常妨碍疗效。研究人员正越来越多地探索利用纳米技术和专用载体的创新策略,以应对这些挑战并提高皮肤药物的疗效。我们设计了一种新型给药系统--双糖体,作为皮肤途径的潜在囊泡载体系统。双糖体是一种以胆汁盐为稳定剂的脂基胶体囊泡,在储存和运输过程中具有更高的稳定性。双糖体的脂质双分子层具有超强的柔韧性,有利于穿透角质层。本综述探讨了双糖体在治疗各种疾病的皮肤制剂中的应用、其开发技术和特性,并阐明了其与传统脂质纳米载体相比的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信