[A lung sound classification model with a spatial and channel reconstruction convolutional module].

Q3 Medicine
N Ye, C Wu, J Jiang
{"title":"[A lung sound classification model with a spatial and channel reconstruction convolutional module].","authors":"N Ye, C Wu, J Jiang","doi":"10.12122/j.issn.1673-4254.2024.09.12","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To construct a model with a spatial and channel reconstruction convolutional module for accurate identification and classification of lung sound data.</p><p><strong>Methods: </strong>We propose a convolutional network architecture combining the spatial-channel reconstruction convolution (SCConv) module. A lung sound feature extraction method combining the dual tunable Q-factor wavelet transform (DTQWT) with the triple Wigner-Ville transform (WVT) was used to improve the model's ability to capture the key features of the lung sounds by adaptively focusing on the important channel and spatial features. The performance of the model for classification of normal, crackles, wheezes, and crackles with wheezes was tested using the ICBHI2017 dataset.</p><p><strong>Results and conclusion: </strong>The accuracy, sensitivity, specificity and F1 score of the proposed method reached 85.68%, 93.55%, 86.79% and 90.51%, respectively, demonstrating its good performance in classification tasks in the ICBHI2017 lung sound database, especially for distinguishing normal from abnormal lung sounds.</p>","PeriodicalId":18962,"journal":{"name":"南方医科大学学报杂志","volume":"44 9","pages":"1720-1728"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"南方医科大学学报杂志","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12122/j.issn.1673-4254.2024.09.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To construct a model with a spatial and channel reconstruction convolutional module for accurate identification and classification of lung sound data.

Methods: We propose a convolutional network architecture combining the spatial-channel reconstruction convolution (SCConv) module. A lung sound feature extraction method combining the dual tunable Q-factor wavelet transform (DTQWT) with the triple Wigner-Ville transform (WVT) was used to improve the model's ability to capture the key features of the lung sounds by adaptively focusing on the important channel and spatial features. The performance of the model for classification of normal, crackles, wheezes, and crackles with wheezes was tested using the ICBHI2017 dataset.

Results and conclusion: The accuracy, sensitivity, specificity and F1 score of the proposed method reached 85.68%, 93.55%, 86.79% and 90.51%, respectively, demonstrating its good performance in classification tasks in the ICBHI2017 lung sound database, especially for distinguishing normal from abnormal lung sounds.

[带有空间和信道重构卷积模块的肺部声音分类模型]。
目的构建一个具有空间和信道重构卷积模块的模型,用于准确识别和分类肺部声音数据:我们提出了一种结合空间-信道重构卷积(SCConv)模块的卷积网络结构。方法:我们提出了一种结合空间-信道重构卷积(SCConv)模块的卷积网络架构,并采用了一种结合双可调 Q 因子小波变换(DTQWT)和三维格纳-维尔变换(WVT)的肺部声音特征提取方法,通过自适应地关注重要的信道和空间特征,提高了模型捕捉肺部声音关键特征的能力。利用 ICBHI2017 数据集测试了该模型在正常、噼啪声、喘鸣声和噼啪声伴喘鸣声分类方面的性能:结果:提出的方法的准确率、灵敏度、特异性和 F1 分数分别达到了 85.68%、93.55%、86.79% 和 90.51%,表明其在 ICBHI2017 肺部声音数据库的分类任务中表现良好,尤其是在区分正常和异常肺部声音方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
南方医科大学学报杂志
南方医科大学学报杂志 Medicine-Medicine (all)
CiteScore
1.50
自引率
0.00%
发文量
208
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信