Termites and subsocial roaches inherited many bacterial-borne carbohydrate-active enzymes (CAZymes) from their common ancestor.

IF 5.2 1区 生物学 Q1 BIOLOGY
Tereza Beránková, Jigyasa Arora, Johanna Romero Arias, Aleš Buček, Gaku Tokuda, Jan Šobotník, Simon Hellemans, Thomas Bourguignon
{"title":"Termites and subsocial roaches inherited many bacterial-borne carbohydrate-active enzymes (CAZymes) from their common ancestor.","authors":"Tereza Beránková, Jigyasa Arora, Johanna Romero Arias, Aleš Buček, Gaku Tokuda, Jan Šobotník, Simon Hellemans, Thomas Bourguignon","doi":"10.1038/s42003-024-07146-w","DOIUrl":null,"url":null,"abstract":"<p><p>Termites digest wood using Carbohydrate-Active Enzymes (CAZymes) produced by gut bacteria with whom they have cospeciated at geological timescales. Whether CAZymes were encoded in the genomes of their ancestor's gut bacteria and transmitted to modern termites or acquired more recently from bacteria not associated with termites is unclear. We used gut metagenomes from 195 termites and one Cryptocercus, the sister group of termites, to investigate the evolution of termite gut bacterial CAZymes. We found 420 termite-specific clusters in 81 bacterial CAZyme gene trees, including 404 clusters showing strong cophylogenetic patterns with termites. Of the 420 clusters, 131 included at least one bacterial CAZyme sequence associated with Cryptocercus or Mastotermes, the sister group of all other termites. Our results suggest many bacterial CAZymes have been encoded in the genomes of termite gut bacteria since termite origin, indicating termites rely upon many bacterial CAZymes endemic to their guts to digest wood.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-024-07146-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Termites digest wood using Carbohydrate-Active Enzymes (CAZymes) produced by gut bacteria with whom they have cospeciated at geological timescales. Whether CAZymes were encoded in the genomes of their ancestor's gut bacteria and transmitted to modern termites or acquired more recently from bacteria not associated with termites is unclear. We used gut metagenomes from 195 termites and one Cryptocercus, the sister group of termites, to investigate the evolution of termite gut bacterial CAZymes. We found 420 termite-specific clusters in 81 bacterial CAZyme gene trees, including 404 clusters showing strong cophylogenetic patterns with termites. Of the 420 clusters, 131 included at least one bacterial CAZyme sequence associated with Cryptocercus or Mastotermes, the sister group of all other termites. Our results suggest many bacterial CAZymes have been encoded in the genomes of termite gut bacteria since termite origin, indicating termites rely upon many bacterial CAZymes endemic to their guts to digest wood.

白蚁和亚社会蟑螂从它们的共同祖先那里继承了许多细菌携带的碳水化合物活性酶(CAZymes)。
白蚁利用由肠道细菌产生的碳水化合物活性酶(CAZymes)消化木材,白蚁与肠道细菌在地质年代上是共生的。CAZymes是在白蚁祖先的肠道细菌基因组中编码并传递给现代白蚁的,还是最近从与白蚁无关的细菌中获得的,目前还不清楚。我们利用来自 195 种白蚁和一种隐杆线虫(白蚁的姊妹类)的肠道元基因组来研究白蚁肠道细菌 CAZymes 的进化。我们在 81 个细菌 CAZyme 基因树中发现了 420 个白蚁特异性基因簇,其中 404 个基因簇与白蚁具有很强的同源模式。在这 420 个聚类中,有 131 个聚类包含至少一个与隐杆线虫或乳白蚁相关的细菌 CAZyme 序列,而隐杆线虫或乳白蚁是所有其他白蚁的姊妹群。我们的研究结果表明,自白蚁起源以来,白蚁肠道细菌的基因组中已经编码了许多细菌CAZyme,这表明白蚁依靠其肠道中特有的许多细菌CAZyme来消化木材。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信