Infrared laser-induced gene expression in single cells characterized by quantitative imaging in Physcomitrium patens.

IF 5.2 1区 生物学 Q1 BIOLOGY
Takumi Tomoi, Yuka Yoshida, Suguru Ohe, Yukiko Kabeya, Mitsuyasu Hasebe, Tomohiro Morohoshi, Takashi Murata, Joe Sakamoto, Yosuke Tamada, Yasuhiro Kamei
{"title":"Infrared laser-induced gene expression in single cells characterized by quantitative imaging in Physcomitrium patens.","authors":"Takumi Tomoi, Yuka Yoshida, Suguru Ohe, Yukiko Kabeya, Mitsuyasu Hasebe, Tomohiro Morohoshi, Takashi Murata, Joe Sakamoto, Yosuke Tamada, Yasuhiro Kamei","doi":"10.1038/s42003-024-07141-1","DOIUrl":null,"url":null,"abstract":"<p><p>A spatiotemporal understanding of gene function requires the precise control of gene expression in each cell. Here, we use an infrared laser-evoked gene operator (IR-LEGO) system to induce gene expression at the single-cell level in the moss Physcomitrium patens by heating a living cell with an IR laser and thereby activating the heat shock response. We identify the laser irradiation conditions that provide higher inducibility with lower invasiveness by changing the laser power and irradiation duration. Furthermore, we quantitatively characterize the induction profile of the heat shock response using a heat-induced fluorescence reporter system after the IR laser irradiation of single cells under different conditions. Our data indicate that IR laser irradiation with long duration leads to higher inducibility according to increase in the laser power but not vice versa, and that the higher laser power even without conferring apparent damage to the cells decelerates and/or delayed gene induction. We define the temporal shift in expression as a function of onset and duration according to laser power and irradiation duration. This study contributes to the versatile application of IR-LEGO in plants and improves our understanding of heat shock-induced gene expression.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"7 1","pages":"1448"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-024-07141-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A spatiotemporal understanding of gene function requires the precise control of gene expression in each cell. Here, we use an infrared laser-evoked gene operator (IR-LEGO) system to induce gene expression at the single-cell level in the moss Physcomitrium patens by heating a living cell with an IR laser and thereby activating the heat shock response. We identify the laser irradiation conditions that provide higher inducibility with lower invasiveness by changing the laser power and irradiation duration. Furthermore, we quantitatively characterize the induction profile of the heat shock response using a heat-induced fluorescence reporter system after the IR laser irradiation of single cells under different conditions. Our data indicate that IR laser irradiation with long duration leads to higher inducibility according to increase in the laser power but not vice versa, and that the higher laser power even without conferring apparent damage to the cells decelerates and/or delayed gene induction. We define the temporal shift in expression as a function of onset and duration according to laser power and irradiation duration. This study contributes to the versatile application of IR-LEGO in plants and improves our understanding of heat shock-induced gene expression.

通过定量成像鉴定红外激光诱导的斑鸠单细胞基因表达。
要从时空角度了解基因功能,就必须精确控制每个细胞中的基因表达。在这里,我们利用红外激光诱导基因操作器(IR-LEGO)系统,通过用红外激光加热活细胞,从而激活热休克反应,在单细胞水平上诱导青苔Physcomitrium patens的基因表达。通过改变激光功率和照射时间,我们确定了可提供较高诱导性和较低侵袭性的激光照射条件。此外,我们还利用热诱导荧光报告系统定量描述了不同条件下红外激光照射单细胞后热休克反应的诱导情况。我们的数据表明,持续时间长的红外激光照射会随着激光功率的增加而导致更高的诱导性,但反之亦然。我们根据激光功率和辐照持续时间将表达的时间转变定义为起始和持续时间的函数。这项研究有助于 IR-LEGO 在植物中的广泛应用,并加深了我们对热休克诱导基因表达的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信