{"title":"Preparation of Silver Nanoparticles in a Water-in-Oil Microemulsion Stabilized by Ecosurf EH3 and Determination of Their Electrophoretic Mobility","authors":"Pavel S. Popovetskiy, Sofia A. Petrochenko","doi":"10.1002/elps.202400200","DOIUrl":null,"url":null,"abstract":"<p>This work describes a study on the electrophoresis of silver nanoparticles in reverse microemulsions with varying water content. The microemulsion was stabilized using a nonionic ethoxylated surfactant, 2-ethylhexanol triethoxylate (Ecosurf EH3). This study represents the second example of electrophoresis research conducted in media with a low dielectric constant for etoxylated surfactants. The study also determined the boundaries of thermodynamic stability and the conditions required to obtain nanoparticles with a high yield. The hydrodynamic diameter and electrophoretic mobility of nanoparticles were measured using dynamic light scattering and laser Doppler electrophoresis. The study determined the boundary conditions for applying these methods to laser-absorbing samples. The electrophoretic mobility of nanoparticles was found to be dependent on the fraction of water in the range of 2–5% vol. (equivalent to a metal content of 10–25 mM), as determined by electrophoresis in a free medium. The increase in volume fraction of water leads to agglomeration of micelles, which causes a decrease in the electrokinetic potential of nanoparticles, likely due to the blurring of the diffuse part of the electrical double layer.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":"45 21-22","pages":"1955-1962"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elps.202400200","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This work describes a study on the electrophoresis of silver nanoparticles in reverse microemulsions with varying water content. The microemulsion was stabilized using a nonionic ethoxylated surfactant, 2-ethylhexanol triethoxylate (Ecosurf EH3). This study represents the second example of electrophoresis research conducted in media with a low dielectric constant for etoxylated surfactants. The study also determined the boundaries of thermodynamic stability and the conditions required to obtain nanoparticles with a high yield. The hydrodynamic diameter and electrophoretic mobility of nanoparticles were measured using dynamic light scattering and laser Doppler electrophoresis. The study determined the boundary conditions for applying these methods to laser-absorbing samples. The electrophoretic mobility of nanoparticles was found to be dependent on the fraction of water in the range of 2–5% vol. (equivalent to a metal content of 10–25 mM), as determined by electrophoresis in a free medium. The increase in volume fraction of water leads to agglomeration of micelles, which causes a decrease in the electrokinetic potential of nanoparticles, likely due to the blurring of the diffuse part of the electrical double layer.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.