Extracellular vesicle-packaged miR-4253 secreted by cancer-associated fibroblasts facilitates cell proliferation in gastric cancer by inducing macrophage M2 polarization.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2024-12-31 Epub Date: 2024-11-06 DOI:10.1080/15384047.2024.2424490
Xinxing Duan, Xiong Yu, Jin Gan
{"title":"Extracellular vesicle-packaged miR-4253 secreted by cancer-associated fibroblasts facilitates cell proliferation in gastric cancer by inducing macrophage M2 polarization.","authors":"Xinxing Duan, Xiong Yu, Jin Gan","doi":"10.1080/15384047.2024.2424490","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer-associated fibroblasts (CAFs) can interact with macrophages in the tumor microenvironment by secreting extracellular vesicles (EVs), thereby affecting tumor progression. However, the mechanisms of CAF-secreted EVs in gastric cancer (GC) remain not well understood. Here, we investigated the effect of CAF-EVs on macrophage polarization in GC and the underlying mechanisms. Macrophage polarization was evaluated using flow cytometry and quantitative real-time polymerase chain reaction. GC cell proliferation was determined using cell counting kit-8, EdU, and colony formation assays. The molecular mechanism was explored using microarray analysis, dual-luciferase reporter assay, and RNA pull-down analysis. The results showed that CAFs secreted EVs that inhibit macrophage M1 polarization and promote M2 polarization. Moreover, miR-4253 expression was increased in CAF-EVs, and inhibition of miR-4253 reversed the macrophage polarization induced by EVs. IL6R was identified as the target of miR-4253. Additionally, macrophages treated with EVs that encapsulated miR-4253 promote GC cell proliferation. In conclusion, CAF-secreted EVs packaging miR-4253 facilitate macrophage polarization from M1 to M2 phenotype by targeting IL6R, thereby accelerating GC cell proliferation. The findings suggest that EV-encapsulated miR-4253 may be a promising therapeutic target of GC.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2424490","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer-associated fibroblasts (CAFs) can interact with macrophages in the tumor microenvironment by secreting extracellular vesicles (EVs), thereby affecting tumor progression. However, the mechanisms of CAF-secreted EVs in gastric cancer (GC) remain not well understood. Here, we investigated the effect of CAF-EVs on macrophage polarization in GC and the underlying mechanisms. Macrophage polarization was evaluated using flow cytometry and quantitative real-time polymerase chain reaction. GC cell proliferation was determined using cell counting kit-8, EdU, and colony formation assays. The molecular mechanism was explored using microarray analysis, dual-luciferase reporter assay, and RNA pull-down analysis. The results showed that CAFs secreted EVs that inhibit macrophage M1 polarization and promote M2 polarization. Moreover, miR-4253 expression was increased in CAF-EVs, and inhibition of miR-4253 reversed the macrophage polarization induced by EVs. IL6R was identified as the target of miR-4253. Additionally, macrophages treated with EVs that encapsulated miR-4253 promote GC cell proliferation. In conclusion, CAF-secreted EVs packaging miR-4253 facilitate macrophage polarization from M1 to M2 phenotype by targeting IL6R, thereby accelerating GC cell proliferation. The findings suggest that EV-encapsulated miR-4253 may be a promising therapeutic target of GC.

癌相关成纤维细胞分泌的胞外囊泡包装 miR-4253 通过诱导巨噬细胞 M2 极化促进胃癌细胞增殖
癌症相关成纤维细胞(CAFs)可通过分泌细胞外囊泡(EVs)与肿瘤微环境中的巨噬细胞相互作用,从而影响肿瘤的进展。然而,CAF分泌的EVs在胃癌(GC)中的作用机制仍不甚明了。在此,我们研究了CAF-EVs对胃癌巨噬细胞极化的影响及其内在机制。使用流式细胞术和定量实时聚合酶链反应评估巨噬细胞极化。使用细胞计数试剂盒-8、EdU和集落形成试验测定GC细胞的增殖。使用芯片分析、双荧光素酶报告分析和 RNA 拉取分析探讨了分子机制。结果表明,CAFs 分泌的 EVs 可抑制巨噬细胞 M1 极化,促进 M2 极化。此外,miR-4253在CAF-EVs中表达增加,抑制miR-4253可逆转EVs诱导的巨噬细胞极化。IL6R被确定为miR-4253的靶标。此外,用包裹了 miR-4253 的 EVs 处理巨噬细胞可促进 GC 细胞增殖。总之,CAF分泌的包裹miR-4253的EV通过靶向IL6R促进巨噬细胞从M1表型极化到M2表型,从而加速GC细胞增殖。研究结果表明,EV包裹的miR-4253可能是一种很有前景的GC治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信