Enhanced Coplanarity and Giant Birefringence in Hydroxypyridinium Nitrate via Hydrogen Bonding between Planar Donors and Planar Acceptors.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jian-Ping Yin, Jingyu Guo, Hao Huo, Xin Liu, Xue-Jie Cheng, Zheshuai Lin, Li-Ming Wu, Ling Chen
{"title":"Enhanced Coplanarity and Giant Birefringence in Hydroxypyridinium Nitrate via Hydrogen Bonding between Planar Donors and Planar Acceptors.","authors":"Jian-Ping Yin, Jingyu Guo, Hao Huo, Xin Liu, Xue-Jie Cheng, Zheshuai Lin, Li-Ming Wu, Ling Chen","doi":"10.1002/anie.202417579","DOIUrl":null,"url":null,"abstract":"<p><p>Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C<sub>5</sub>H<sub>6</sub>ON)<sup>+</sup>(NO<sub>3</sub>)<sup>-</sup>, (4-hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C<sub>5</sub>H<sub>6</sub>ON)<sup>+</sup>) and planar hydrogen bond acceptor ((NO<sub>3</sub>)<sup>-</sup>) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a <math> <semantics><mrow><mi>Δ</mi> <msup><mrow><mi>n</mi></mrow> <mrow><mi>o</mi> <mi>b</mi> <mi>v</mi> <mo>.</mo></mrow> </msup> </mrow> <annotation>${\\Delta {n}^{obv.}}$</annotation> </semantics> </math> =0.494 ( <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>n</mi> <mrow><mi>m</mi> <mi>a</mi> <mi>x</mi></mrow> <mrow><mi>c</mi> <mi>a</mi> <mi>l</mi> <mo>.</mo></mrow> </msubsup> </mrow> <annotation>${\\Delta {n}_{max}^{cal.}}$</annotation> </semantics> </math> =0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This <math> <semantics><mrow><mi>Δ</mi> <msup><mrow><mi>n</mi></mrow> <mrow><mi>o</mi> <mi>b</mi> <mi>v</mi> <mo>.</mo></mrow> </msup> </mrow> <annotation>${\\Delta {n}^{obv.}}$</annotation> </semantics> </math> value already surpasses those of the benchmark crystals, e.g., YVO<sub>4</sub> and CaCO<sub>3</sub>, commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202417579"},"PeriodicalIF":16.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417579","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C5H6ON)+(NO3)-, (4-hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C5H6ON)+) and planar hydrogen bond acceptor ((NO3)-) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a Δ n o b v . ${\Delta {n}^{obv.}}$ =0.494 ( Δ n m a x c a l . ${\Delta {n}_{max}^{cal.}}$ =0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This Δ n o b v . ${\Delta {n}^{obv.}}$ value already surpasses those of the benchmark crystals, e.g., YVO4 and CaCO3, commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices.

通过平面供体和平面受体之间的氢键增强硝酸羟吡啶鎓的共面性和巨型双折射。
具有光学各向异性的双折射晶体是重要的光学元件。然而,设计和合成双折射晶体面临着实现各向异性结构的挑战,尤其是共面几何结构。在此,我们通过平面供体和平面受体之间的氢键作用,在离子化合物 (C5H6ON)+(NO3)-(4-羟基吡啶硝酸盐,4HPN)中实现了显著的双折射。我们证明,平面氢键供体((C5H6ON)+)和平面氢键受体((NO3)-)之间的相互作用确保了晶体堆积过程中的共面性,从而产生了所需的巨大光学各向异性。在两个人工切割的晶体片上,我们观察到 a = 0.494(= 0.593),这是硝酸盐或羟基吡啶衍生物中最大的。这一数值已经超过了紫外至可见光和近红外光谱范围内常用的基准晶体,如 YVO4 和 CaCO3。4HPN 还表现出很强的二次谐波生成响应(9.55 × KDP)。这种策略为双折射晶体的设计和开发提供了一个前景广阔的途径,有望应用于光通信、传感和信号处理设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信